A364902 Let x, y be the greatest exponents of 2, 3 respectively such that 2^x, 3^y do not exceed n and let k_2, k_3 be n - 2^x, and n - 3^y respectively. Then for n such that k_2 = 0 or k_3 = 0, a(n) = n, else a(n) is the least novel number Min{p*a(k_2), q*a(k_3)}, where p, q are primes not equal to either 2 or 3.
1, 2, 3, 4, 5, 10, 15, 8, 9, 7, 14, 20, 25, 35, 50, 16, 11, 22, 21, 28, 55, 70, 75, 40, 45, 49, 27, 13, 26, 33, 44, 32, 17, 34, 39, 52, 65, 98, 100, 56, 63, 77, 80, 121, 110, 105, 140, 112, 143, 154, 147, 196, 245, 135, 91, 130, 165, 220, 160, 85, 170, 195, 260, 64, 19, 38, 51, 68
Offset: 1
Keywords
Examples
a(n) = n for n <= 4 because all such n are powers of 2 or 3. a(5) = least novel Min{a(1)*p,a(2)*q} = Min{p,2*q} for o,q prime != 2 or 3, so a(5) = 5. 17=16+1=9+8, so a(17) = least novel Min{a(1)*p,a(8)*q} = Min{p,8*q} = 11. Data can be shown in tabular form in two distinct ways: First row starts with 1 and then rows start with a prime; alternatively each row starts with 2^i or 3^j: 1; 1; 2; 2; 3,4; 3; 5,10,15,8,9; 4,5,10,15; 7,14,20,25,35,50,16; 8; 11,22,21,28,55... 9,7,14,20,25,35,50
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..16384
- Michael De Vlieger, Log log scatterplot of a(n), n = 1..2^16.
Programs
-
Mathematica
nn = 120; c[_] = False; s = {1, 2}; w = Length[s]; t = Prime[s]; flag = 0; Array[Set[{q[#1], p[#1], r[#1]}, {#1, #2, Prepend[#2^Range[Floor@Log[#2, nn]], 1]} & @@ {#2, Prime[#2]}] & @@ {#, s[[#]]} &, w]; Do[If[n == 1, Set[{a[n], c[1]}, {1, True}], Array[Set[m[#], 1] &, w]; Array[Set[j[#], n - p[#]^(-1 + LengthWhile[r[#], # < n + 1 &])] &, w]; Array[ If[j[#] == 0, k[#] = n; flag = #, While[Set[k[#], Prime[m[#]] a[j[#]]]; Or[MemberQ[s, m[#]], c[k[#]]], m[#]++]] &, w]; If[flag > 0, Set[{a[n], c[k[flag]]}, {k[flag], True}]; flag = 0, Set[{a[n], c[#]}, {#, True}] &[Min@ Array[k, w]] ]], {n, nn}]; Array[a, nn] (* Michael De Vlieger, Sep 24 2023 *)
Formula
For n > 6, a(A006899(n) + 1) = prime(n-2).
Comments