This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364906 #6 Aug 24 2023 09:30:19 %S A364906 1,1,1,3,1,2,1,10,3,2,1,9,1,2,1,35,1,6,1,9,2,2,1,34,3,2,10,10,1,7,1, %T A364906 126,1,2,1,30,1,2,2,39,1,6,1,11,3,2,1,130,3,6,1,12,1,20,1,46,2,2,1,31, %U A364906 1,2,9,462,2,7,1,13,1,6,1,120,1,2,4,14,1,7,1 %N A364906 Number of ways to write A056239(n) as a nonnegative linear combination of the multiset of prime indices of n. %C A364906 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A364906 A way of writing n as a (nonnegative) linear combination of a finite sequence y is any sequence of pairs (k_i,y_i) such that k_i >= 0 and Sum k_i*y_i = n. For example, the pairs ((3,1),(1,1),(1,1),(0,2)) are a way of writing 5 as a linear combination of (1,1,1,2), namely 5 = 3*1 + 1*1 + 1*1 + 0*2. Of course, there are A000041(n) ways to write n as a linear combination of (1..n). %C A364906 Conjecture: Positions of 1's are numbers whose distinct divisors all have different GCDs of prime indices, listed by A319319, counted by A319318. %e A364906 The a(2) = 1 through a(10) = 2 ways: %e A364906 1*1 1*2 0*1+2*1 1*3 1*1+1*2 1*4 0*1+0*1+3*1 0*2+2*2 1*1+1*3 %e A364906 1*1+1*1 3*1+0*2 0*1+1*1+2*1 1*2+1*2 4*1+0*3 %e A364906 2*1+0*1 0*1+2*1+1*1 2*2+0*2 %e A364906 0*1+3*1+0*1 %e A364906 1*1+0*1+2*1 %e A364906 1*1+1*1+1*1 %e A364906 1*1+2*1+0*1 %e A364906 2*1+0*1+1*1 %e A364906 2*1+1*1+0*1 %e A364906 3*1+0*1+0*1 %t A364906 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A364906 combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]]; %t A364906 Table[Length[combs[Total[prix[n]],prix[n]]],{n,100}] %Y A364906 The case with no zero coefficients is A000012. %Y A364906 Positions of 1's appear to be A319319. %Y A364906 A001222 counts prime indices, distinct A001221. %Y A364906 A112798 lists prime indices, sum A056239. %Y A364906 A364910 counts nonnegative linear combinations of strict partitions. %Y A364906 Cf. A116861, A275972, A320340, A364350, A364839, A364912, A364914, A364916, A365002, A365003, A365004. %K A364906 nonn %O A364906 1,4 %A A364906 _Gus Wiseman_, Aug 22 2023