cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364906 Number of ways to write A056239(n) as a nonnegative linear combination of the multiset of prime indices of n.

This page as a plain text file.
%I A364906 #6 Aug 24 2023 09:30:19
%S A364906 1,1,1,3,1,2,1,10,3,2,1,9,1,2,1,35,1,6,1,9,2,2,1,34,3,2,10,10,1,7,1,
%T A364906 126,1,2,1,30,1,2,2,39,1,6,1,11,3,2,1,130,3,6,1,12,1,20,1,46,2,2,1,31,
%U A364906 1,2,9,462,2,7,1,13,1,6,1,120,1,2,4,14,1,7,1
%N A364906 Number of ways to write A056239(n) as a nonnegative linear combination of the multiset of prime indices of n.
%C A364906 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A364906 A way of writing n as a (nonnegative) linear combination of a finite sequence y is any sequence of pairs (k_i,y_i) such that k_i >= 0 and Sum k_i*y_i = n. For example, the pairs ((3,1),(1,1),(1,1),(0,2)) are a way of writing 5 as a linear combination of (1,1,1,2), namely 5 = 3*1 + 1*1 + 1*1 + 0*2. Of course, there are A000041(n) ways to write n as a linear combination of (1..n).
%C A364906 Conjecture: Positions of 1's are numbers whose distinct divisors all have different GCDs of prime indices, listed by A319319, counted by A319318.
%e A364906 The a(2) = 1 through a(10) = 2 ways:
%e A364906   1*1  1*2  0*1+2*1  1*3  1*1+1*2  1*4  0*1+0*1+3*1  0*2+2*2  1*1+1*3
%e A364906             1*1+1*1       3*1+0*2       0*1+1*1+2*1  1*2+1*2  4*1+0*3
%e A364906             2*1+0*1                     0*1+2*1+1*1  2*2+0*2
%e A364906                                         0*1+3*1+0*1
%e A364906                                         1*1+0*1+2*1
%e A364906                                         1*1+1*1+1*1
%e A364906                                         1*1+2*1+0*1
%e A364906                                         2*1+0*1+1*1
%e A364906                                         2*1+1*1+0*1
%e A364906                                         3*1+0*1+0*1
%t A364906 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A364906 combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
%t A364906 Table[Length[combs[Total[prix[n]],prix[n]]],{n,100}]
%Y A364906 The case with no zero coefficients is A000012.
%Y A364906 Positions of 1's appear to be A319319.
%Y A364906 A001222 counts prime indices, distinct A001221.
%Y A364906 A112798 lists prime indices, sum A056239.
%Y A364906 A364910 counts nonnegative linear combinations of strict partitions.
%Y A364906 Cf. A116861, A275972, A320340, A364350, A364839, A364912, A364914, A364916, A365002, A365003, A365004.
%K A364906 nonn
%O A364906 1,4
%A A364906 _Gus Wiseman_, Aug 22 2023