cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364911 Triangle read by rows where T(n,k) is the number of integer partitions with sum <= n and with distinct parts summing to k.

This page as a plain text file.
%I A364911 #10 Jan 11 2024 22:56:54
%S A364911 1,1,1,1,2,1,1,3,1,2,1,4,2,3,2,1,5,2,5,3,3,1,6,3,8,4,4,4,1,7,3,11,6,6,
%T A364911 6,5,1,8,4,14,9,8,10,7,6,1,9,4,19,11,11,14,11,9,8,1,10,5,23,14,15,21,
%U A364911 15,14,11,10,1,11,5,28,17,19,28,22,20,17,15,12
%N A364911 Triangle read by rows where T(n,k) is the number of integer partitions with sum <= n and with distinct parts summing to k.
%C A364911 Also the number of ways to write any number up to n as a positive linear combination of a strict integer partition of k.
%H A364911 Andrew Howroyd, <a href="/A364911/b364911.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50)
%F A364911 G.f.: A(x,y) = (1/(1 - x)) * Product_{k>=1} (1 - y^k + y^k/(1 - x^k)). - _Andrew Howroyd_, Jan 11 2024
%e A364911 Triangle begins:
%e A364911   1
%e A364911   1  1
%e A364911   1  2  1
%e A364911   1  3  1  2
%e A364911   1  4  2  3  2
%e A364911   1  5  2  5  3  3
%e A364911   1  6  3  8  4  4  4
%e A364911   1  7  3 11  6  6  6  5
%e A364911   1  8  4 14  9  8 10  7  6
%e A364911   1  9  4 19 11 11 14 11  9  8
%e A364911   1 10  5 23 14 15 21 15 14 11 10
%e A364911   1 11  5 28 17 19 28 22 20 17 15 12
%e A364911   1 12  6 34 21 22 40 28 28 24 24 17 15
%e A364911   1 13  6 40 25 27 50 38 37 34 35 27 22 18
%e A364911   1 14  7 46 29 32 65 49 50 43 51 38 35 26 22
%e A364911   1 15  7 54 33 38 79 62 63 59 68 55 50 41 32 27
%e A364911 Row n = 5 counts the following partitions:
%e A364911     .    1           2     3         4       5
%e A364911          1+1         2+2   1+2       1+3     1+4
%e A364911          1+1+1             1+1+2     1+1+3   2+3
%e A364911          1+1+1+1           1+1+1+2
%e A364911          1+1+1+1+1         1+2+2
%e A364911 Row n = 5 counts the following positive linear combinations:
%e A364911   .  1*1  1*2  1*3      1*4      1*5
%e A364911      2*1  2*2  1*2+1*1  1*3+1*1  1*3+1*2
%e A364911      3*1       1*2+2*1  1*3+2*1  1*4+1*1
%e A364911      4*1       1*2+3*1
%e A364911      5*1       2*2+1*1
%t A364911 Table[Length[Select[Array[IntegerPartitions,n+1,0,Join],Total[Union[#]]==k&]],{n,0,9},{k,0,n}]
%o A364911 (PARI) T(n)={[Vecrev(p) | p<-Vec(prod(k=1, n, 1 - y^k + y^k/(1 - x^k), 1/(1 - x) + O(x*x^n)))]}
%o A364911 { my(A=T(10)); for(n=1, #A, print(A[n])) } \\ _Andrew Howroyd_, Jan 11 2024
%Y A364911 Column n = k is A000009.
%Y A364911 Column k = 0 is A000012.
%Y A364911 Column k = 1 is A000027.
%Y A364911 Row sums are A000070.
%Y A364911 Column k = 2 is A008619.
%Y A364911 Columns are partial sums of columns of A116861.
%Y A364911 Column k = 3 appears to be the partial sums of A137719.
%Y A364911 Diagonal n = 2k is A364910.
%Y A364911 A000041 counts integer partitions, strict A000009.
%Y A364911 A008284 counts partitions by length, strict A008289.
%Y A364911 A114638 counts partitions where (length) = (sum of distinct parts).
%Y A364911 A116608 counts partitions by number of distinct parts.
%Y A364911 A364350 counts combination-free strict partitions, complement A364839.
%Y A364911 Cf. A002865, A066328, A179009, A236912, A237113, A237667, A364912, A364913, A364915, A364916, A365002, A365004.
%K A364911 nonn,tabl
%O A364911 0,5
%A A364911 _Gus Wiseman_, Aug 27 2023