This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364912 #13 Dec 13 2024 09:41:51 %S A364912 1,0,1,0,1,2,0,1,2,3,0,1,4,4,5,0,1,4,8,7,7,0,1,6,13,17,12,11,0,1,6,18, %T A364912 28,30,19,15,0,1,8,24,50,58,53,30,22 %N A364912 Triangle read by rows where T(n,k) is the number of ways to write n as a positive linear combination of an integer partition of k. %C A364912 A way of writing n as a positive linear combination of a finite sequence y is any sequence of pairs (k_i,y_i) such that k_i > 0 and Sum k_i*y_i = n. For example, the pairs ((3,1),(1,1),(2,2)) are a way of writing 8 as a positive linear combination of (1,1,2), namely 8 = 3*1 + 1*1 + 2*2. %H A364912 Steven R. Finch, <a href="/A066062/a066062.pdf">Monoids of natural numbers</a>, March 17, 2009. %F A364912 As an array, also the number of ways to write n-k as a nonnegative linear combination of an integer partition of k (see programs). %e A364912 Triangle begins: %e A364912 1 %e A364912 0 1 %e A364912 0 1 2 %e A364912 0 1 2 3 %e A364912 0 1 4 4 5 %e A364912 0 1 4 8 7 7 %e A364912 0 1 6 13 17 12 11 %e A364912 0 1 6 18 28 30 19 15 %e A364912 0 1 8 24 50 58 53 30 22 %e A364912 Row n = 4 counts the following linear combinations: %e A364912 . 1*4 2*2 2*1+1*2 4*1 %e A364912 1*1+1*3 1*1+1*1+1*2 3*1+1*1 %e A364912 1*2+1*2 1*1+1*2+1*1 2*1+2*1 %e A364912 1*3+1*1 1*2+1*1+1*1 2*1+1*1+1*1 %e A364912 1*1+1*1+1*1+1*1 %e A364912 Row n = 5 counts the following linear combinations: %e A364912 . 1*5 1*1+1*4 2*1+1*3 3*1+1*2 5*1 %e A364912 1*2+1*3 2*2+1*1 2*1+1*1+1*2 4*1+1*1 %e A364912 1*3+1*2 1*1+1*1+1*3 2*1+1*2+1*1 3*1+2*1 %e A364912 1*4+1*1 1*1+1*2+1*2 1*1+1*1+1*1+1*2 3*1+1*1+1*1 %e A364912 1*1+1*3+1*1 1*1+1*1+1*2+1*1 2*1+2*1+1*1 %e A364912 1*2+1*1+1*2 1*1+1*2+1*1+1*1 2*1+1*1+1*1+1*1 %e A364912 1*2+1*2+1*1 1*2+1*1+1*1+1*1 1*1+1*1+1*1+1*1+1*1 %e A364912 1*3+1*1+1*1 %e A364912 Array begins: %e A364912 1 0 0 0 0 0 0 0 %e A364912 1 1 1 1 1 1 1 1 %e A364912 2 2 4 4 6 6 8 8 %e A364912 3 4 8 13 18 24 33 40 %e A364912 5 7 17 28 50 70 107 143 %e A364912 7 12 30 58 108 179 286 428 %e A364912 11 19 53 109 223 394 696 1108 %e A364912 15 30 86 194 420 812 1512 2619 %t A364912 combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]]; %t A364912 Table[Length[Join@@Table[combp[n,ptn],{ptn,IntegerPartitions[k]}]],{n,0,6},{k,0,n}] %t A364912 - or - %t A364912 combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]]; %t A364912 Table[Length[Join@@Table[combs[n-k,ptn],{ptn,IntegerPartitions[k]}]],{n,0,6},{k,0,n}] %Y A364912 Row k = 0 is A000007. %Y A364912 Row k = 1 is A000012. %Y A364912 Column n = 0 is A000041. %Y A364912 Column n = 1 is A000070. %Y A364912 Row sums are A006951. %Y A364912 Row k = 2 is A052928 except initial terms. %Y A364912 The case of strict integer partitions is A116861. %Y A364912 Central column is T(2n,n) = A(n,n) = A364907(n). %Y A364912 With rows reversed we have the nonnegative version A365004. %Y A364912 A000041 counts integer partitions, strict A000009. %Y A364912 A008284 counts partitions by length, strict A008289. %Y A364912 A364350 counts combination-free strict partitions, complement A364839. %Y A364912 A364913 counts combination-full partitions. %Y A364912 Cf. A237113, A364272, A364910, A364911, A364914, A364915, A365002. %K A364912 nonn,tabl %O A364912 0,6 %A A364912 _Gus Wiseman_, Aug 20 2023