cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364912 Triangle read by rows where T(n,k) is the number of ways to write n as a positive linear combination of an integer partition of k.

This page as a plain text file.
%I A364912 #13 Dec 13 2024 09:41:51
%S A364912 1,0,1,0,1,2,0,1,2,3,0,1,4,4,5,0,1,4,8,7,7,0,1,6,13,17,12,11,0,1,6,18,
%T A364912 28,30,19,15,0,1,8,24,50,58,53,30,22
%N A364912 Triangle read by rows where T(n,k) is the number of ways to write n as a positive linear combination of an integer partition of k.
%C A364912 A way of writing n as a positive linear combination of a finite sequence y is any sequence of pairs (k_i,y_i) such that k_i > 0 and Sum k_i*y_i = n. For example, the pairs ((3,1),(1,1),(2,2)) are a way of writing 8 as a positive linear combination of (1,1,2), namely 8 = 3*1 + 1*1 + 2*2.
%H A364912 Steven R. Finch, <a href="/A066062/a066062.pdf">Monoids of natural numbers</a>, March 17, 2009.
%F A364912 As an array, also the number of ways to write n-k as a nonnegative linear combination of an integer partition of k (see programs).
%e A364912 Triangle begins:
%e A364912   1
%e A364912   0  1
%e A364912   0  1  2
%e A364912   0  1  2  3
%e A364912   0  1  4  4  5
%e A364912   0  1  4  8  7  7
%e A364912   0  1  6 13 17 12 11
%e A364912   0  1  6 18 28 30 19 15
%e A364912   0  1  8 24 50 58 53 30 22
%e A364912 Row n = 4 counts the following linear combinations:
%e A364912   .  1*4  2*2      2*1+1*2      4*1
%e A364912           1*1+1*3  1*1+1*1+1*2  3*1+1*1
%e A364912           1*2+1*2  1*1+1*2+1*1  2*1+2*1
%e A364912           1*3+1*1  1*2+1*1+1*1  2*1+1*1+1*1
%e A364912                                 1*1+1*1+1*1+1*1
%e A364912 Row n = 5 counts the following linear combinations:
%e A364912   .  1*5  1*1+1*4  2*1+1*3      3*1+1*2          5*1
%e A364912           1*2+1*3  2*2+1*1      2*1+1*1+1*2      4*1+1*1
%e A364912           1*3+1*2  1*1+1*1+1*3  2*1+1*2+1*1      3*1+2*1
%e A364912           1*4+1*1  1*1+1*2+1*2  1*1+1*1+1*1+1*2  3*1+1*1+1*1
%e A364912                    1*1+1*3+1*1  1*1+1*1+1*2+1*1  2*1+2*1+1*1
%e A364912                    1*2+1*1+1*2  1*1+1*2+1*1+1*1  2*1+1*1+1*1+1*1
%e A364912                    1*2+1*2+1*1  1*2+1*1+1*1+1*1  1*1+1*1+1*1+1*1+1*1
%e A364912                    1*3+1*1+1*1
%e A364912 Array begins:
%e A364912   1   0   0   0    0    0    0     0
%e A364912   1   1   1   1    1    1    1     1
%e A364912   2   2   4   4    6    6    8     8
%e A364912   3   4   8   13   18   24   33    40
%e A364912   5   7   17  28   50   70   107   143
%e A364912   7   12  30  58   108  179  286   428
%e A364912   11  19  53  109  223  394  696   1108
%e A364912   15  30  86  194  420  812  1512  2619
%t A364912 combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
%t A364912 Table[Length[Join@@Table[combp[n,ptn],{ptn,IntegerPartitions[k]}]],{n,0,6},{k,0,n}]
%t A364912 - or -
%t A364912 combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
%t A364912 Table[Length[Join@@Table[combs[n-k,ptn],{ptn,IntegerPartitions[k]}]],{n,0,6},{k,0,n}]
%Y A364912 Row k = 0 is A000007.
%Y A364912 Row k = 1 is A000012.
%Y A364912 Column n = 0 is A000041.
%Y A364912 Column n = 1 is A000070.
%Y A364912 Row sums are A006951.
%Y A364912 Row k = 2 is A052928 except initial terms.
%Y A364912 The case of strict integer partitions is A116861.
%Y A364912 Central column is T(2n,n) = A(n,n) = A364907(n).
%Y A364912 With rows reversed we have the nonnegative version A365004.
%Y A364912 A000041 counts integer partitions, strict A000009.
%Y A364912 A008284 counts partitions by length, strict A008289.
%Y A364912 A364350 counts combination-free strict partitions, complement A364839.
%Y A364912 A364913 counts combination-full partitions.
%Y A364912 Cf. A237113, A364272, A364910, A364911, A364914, A364915, A365002.
%K A364912 nonn,tabl
%O A364912 0,6
%A A364912 _Gus Wiseman_, Aug 20 2023