This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364913 #7 Oct 24 2023 10:45:29 %S A364913 0,0,1,2,4,5,10,12,20,27,39,51,74,95,130,169,225,288,378,479,617,778, %T A364913 990,1239,1560,1938,2419,2986,3696,4538,5575,6810,8319,10102,12274, %U A364913 14834,17932,21587,25963,31120,37275,44513,53097,63181,75092,89030,105460,124647 %N A364913 Number of integer partitions of n having a part that can be written as a nonnegative linear combination of the other (possibly equal) parts. %C A364913 Includes all non-strict partitions (A047967). %F A364913 a(n) + A364915(n) = A000041(n). %e A364913 The a(0) = 0 through a(7) = 12 partitions: %e A364913 . . (11) (21) (22) (41) (33) (61) %e A364913 (111) (31) (221) (42) (322) %e A364913 (211) (311) (51) (331) %e A364913 (1111) (2111) (222) (421) %e A364913 (11111) (321) (511) %e A364913 (411) (2221) %e A364913 (2211) (3211) %e A364913 (3111) (4111) %e A364913 (21111) (22111) %e A364913 (111111) (31111) %e A364913 (211111) %e A364913 (1111111) %e A364913 The partition (5,4,3) has no part that can be written as a nonnegative linear combination of the others, so is not counted under a(12). %e A364913 The partition (6,4,3,2) has 6 = 4+2, or 6 = 3+3, or 6 = 2+2+2, or 4 = 2+2, so is counted under a(15). %t A364913 combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]]; %t A364913 Table[Length[Select[IntegerPartitions[n],!UnsameQ@@#||Or@@Table[combs[#[[k]],Delete[#,k]]!={},{k,Length[#]}]&]],{n,0,15}] %Y A364913 The strict case is A364839. %Y A364913 For sums instead of combinations we have A364272, binary A364670. %Y A364913 The complement in strict partitions is A364350. %Y A364913 For subsets instead of partitions we have A364914, complement A326083. %Y A364913 Allowing equal parts gives A365068, complement A364915. %Y A364913 A000041 counts integer partitions, strict A000009. %Y A364913 A008284 counts partitions by length, strict A008289. %Y A364913 A116861 and A364916 count linear combinations of strict partitions. %Y A364913 A365006 = no strict partitions w/ pos linear combination. %Y A364913 Cf. A085489, A151897, A236912, A237113, A237667, A275972, A364346. %K A364913 nonn %O A364913 0,4 %A A364913 _Gus Wiseman_, Aug 20 2023