This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364914 #23 Dec 13 2024 09:39:31 %S A364914 0,0,1,3,9,20,48,101,219,454,944,1917,3925,7915,16004,32188,64751, %T A364914 129822,260489,521672,1045060,2091808,4187047,8377255,16762285, %U A364914 33531228,67077485,134170217,268371678,536772231,1073611321,2147282291,4294697258,8589527163,17179321094 %N A364914 Number of subsets of {1..n} such that some element can be written as a nonnegative linear combination of the others. %C A364914 A variation of non-binary combination-full sets where parts can be re-used. The complement is counted by A326083. The binary version is A093971. For non-re-usable parts we have A364534. First differences are A365046. %H A364914 Steven R. Finch, <a href="/A066062/a066062.pdf">Monoids of natural numbers</a>, March 17, 2009. %e A364914 The set {3,4,5,17} has 17 = 1*3 + 1*4 + 2*5, so is counted under a(17). %e A364914 The a(0) = 0 through a(5) = 20 subsets: %e A364914 . . {1,2} {1,2} {1,2} {1,2} %e A364914 {1,3} {1,3} {1,3} %e A364914 {1,2,3} {1,4} {1,4} %e A364914 {2,4} {1,5} %e A364914 {1,2,3} {2,4} %e A364914 {1,2,4} {1,2,3} %e A364914 {1,3,4} {1,2,4} %e A364914 {2,3,4} {1,2,5} %e A364914 {1,2,3,4} {1,3,4} %e A364914 {1,3,5} %e A364914 {1,4,5} %e A364914 {2,3,4} %e A364914 {2,3,5} %e A364914 {2,4,5} %e A364914 {1,2,3,4} %e A364914 {1,2,3,5} %e A364914 {1,2,4,5} %e A364914 {1,3,4,5} %e A364914 {2,3,4,5} %e A364914 {1,2,3,4,5} %t A364914 combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]]; %t A364914 Table[Length[Select[Subsets[Range[n]],Or@@Table[combs[#[[k]],Delete[#,k]]!={},{k,Length[#]}]&]],{n,0,10}] %o A364914 (Python) %o A364914 from itertools import combinations %o A364914 from sympy.utilities.iterables import partitions %o A364914 def A364914(n): %o A364914 c, mlist = 0, [] %o A364914 for m in range(1,n+1): %o A364914 t = set() %o A364914 for p in partitions(m,k=m-1): %o A364914 t.add(tuple(sorted(p.keys()))) %o A364914 mlist.append([set(d) for d in t]) %o A364914 for k in range(2,n+1): %o A364914 for w in combinations(range(1,n+1),k): %o A364914 ws = set(w) %o A364914 for d in w: %o A364914 for s in mlist[d-1]: %o A364914 if s <= ws: %o A364914 c += 1 %o A364914 break %o A364914 else: %o A364914 continue %o A364914 break %o A364914 return c # _Chai Wah Wu_, Nov 17 2023 %Y A364914 The binary complement is A007865. %Y A364914 The binary version without re-usable parts is A088809. %Y A364914 The binary version is A093971. %Y A364914 The complement without re-usable parts is A151897. %Y A364914 The complement is counted by A326083. %Y A364914 The version without re-usable parts is A364534. %Y A364914 The version for strict partitions is A364839, complement A364350. %Y A364914 The version for partitions is A364913. %Y A364914 The version for positive combinations is A365043, complement A365044. %Y A364914 First differences are A365046. %Y A364914 Cf. A011782, A085489, A103580, A116861, A124506, A237113, A237668, A308546, A324736, A326020, A326080, A364272, A364349, A364756. %K A364914 nonn %O A364914 0,4 %A A364914 _Gus Wiseman_, Aug 17 2023 %E A364914 a(12)-a(34) from _Chai Wah Wu_, Nov 17 2023