This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364915 #22 Sep 25 2023 18:22:18 %S A364915 1,1,2,2,3,3,4,5,6,7,8,12,10,16,16,19,21,29,25,37,35,44,46,60,55,75, %T A364915 71,90,90,114,110,140,138,167,163,217,201,248,241,298,303,359,355,425, %U A364915 422,520,496,594,603,715,706,834,826,968,972,1153,1147,1334,1315,1530 %N A364915 Number of integer partitions of n such that no distinct part can be written as a nonnegative linear combination of other distinct parts. %F A364915 a(n) = A000041(n) - A365068(n). %e A364915 The a(1) = 1 through a(10) = 8 partitions (A=10): %e A364915 1 2 3 4 5 6 7 8 9 A %e A364915 11 111 22 32 33 43 44 54 55 %e A364915 1111 11111 222 52 53 72 64 %e A364915 111111 322 332 333 73 %e A364915 1111111 2222 522 433 %e A364915 11111111 3222 3322 %e A364915 111111111 22222 %e A364915 1111111111 %e A364915 The partition (5,4,3) has no part that can be written as a nonnegative linear combination of the others, so is counted under a(12). %e A364915 The partition (6,4,3,2) has 6=4+2, or 6=3+3, or 6=2+2+2, or 4=2+2, so is not counted under a(15). %t A364915 combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]]; %t A364915 Table[Length[Select[IntegerPartitions[n], Function[ptn,!Or@@Table[combs[ptn[[k]],Delete[ptn,k]]!={}, {k,Length[ptn]}]]@*Union]], {n,0,15}] %o A364915 (Python) %o A364915 from sympy.utilities.iterables import partitions %o A364915 def A364915(n): %o A364915 if n <= 1: return 1 %o A364915 alist, c = [set(tuple(sorted(set(p))) for p in partitions(i)) for i in range(n)], 1 %o A364915 for p in partitions(n,k=n-1): %o A364915 s = set(p) %o A364915 if not any(set(t).issubset(s-{q}) for q in s for t in alist[q]): %o A364915 c += 1 %o A364915 return c # _Chai Wah Wu_, Sep 23 2023 %Y A364915 For sums instead of combinations we have A237667, binary A236912. %Y A364915 For subsets instead of partitions we have A326083, complement A364914. %Y A364915 The strict case is A364350. %Y A364915 The complement is A365068, strict A364839. %Y A364915 The positive case is A365072, strict A365006. %Y A364915 A000041 counts integer partitions, strict A000009. %Y A364915 A007865 counts binary sum-free sets w/ re-usable parts, complement A093971. %Y A364915 A008284 counts partitions by length, strict A008289. %Y A364915 A116861 and A364916 count linear combinations of strict partitions. %Y A364915 A364912 counts linear combinations of partitions of k. %Y A364915 Cf. A085489, A108917, A151897, A237113, A323092, A364272, A364533, A364910, A364911, A364913. %K A364915 nonn %O A364915 0,3 %A A364915 _Gus Wiseman_, Aug 22 2023 %E A364915 a(37)-a(59) from _Chai Wah Wu_, Sep 25 2023