A364916 Array read by antidiagonals downwards where A(n,k) is the number of ways to write n as a nonnegative linear combination of the parts of a strict integer partition of k.
1, 1, 0, 1, 1, 0, 2, 0, 1, 0, 2, 1, 1, 1, 0, 3, 1, 2, 0, 1, 0, 4, 1, 1, 3, 1, 1, 0, 5, 2, 2, 2, 3, 0, 1, 0, 6, 2, 4, 2, 3, 3, 1, 1, 0, 8, 3, 4, 4, 3, 2, 5, 0, 1, 0, 10, 3, 5, 4, 7, 4, 3, 4, 1, 1, 0, 12, 5, 6, 6, 7, 7, 4, 3, 5, 0, 1, 0, 15, 5, 9, 7, 8, 6, 12, 3, 4, 6, 1, 1, 0
Offset: 0
Examples
Array begins: 1 1 1 2 2 3 4 5 6 8 10 12 15 18 22 27 0 1 0 1 1 1 2 2 3 3 5 5 7 8 10 12 0 1 1 2 1 2 4 4 5 6 9 10 13 15 19 23 0 1 0 3 2 2 4 4 6 7 11 11 15 17 22 27 0 1 1 3 3 3 7 7 8 10 16 17 23 27 33 42 0 1 0 3 2 4 7 6 9 9 17 17 23 26 33 43 0 1 1 5 3 4 12 10 13 16 26 27 36 42 52 68 0 1 0 4 3 3 10 11 13 13 27 25 35 40 51 67 0 1 1 5 4 5 15 13 19 20 36 37 51 58 72 97 0 1 0 6 4 5 14 13 18 23 42 39 54 61 78 105 0 1 1 6 4 6 20 17 23 25 54 50 69 80 98 138 0 1 0 6 4 5 19 16 23 24 54 55 71 80 103 144 0 1 1 8 6 7 27 23 30 35 72 70 103 113 139 199 0 1 0 7 5 6 24 21 29 31 75 68 95 115 139 201 0 1 1 8 5 7 31 27 36 39 90 86 122 137 178 255 0 1 0 9 6 8 31 27 38 42 100 93 129 148 187 289 Triangle begins: 1 1 0 1 1 0 2 0 1 0 2 1 1 1 0 3 1 2 0 1 0 4 1 1 3 1 1 0 5 2 2 2 3 0 1 0 6 2 4 2 3 3 1 1 0 8 3 4 4 3 2 5 0 1 0 10 3 5 4 7 4 3 4 1 1 0 12 5 6 6 7 7 4 3 5 0 1 0 15 5 9 7 8 6 12 3 4 6 1 1 0 18 7 10 11 10 9 10 10 5 4 6 0 1 0 22 8 13 11 16 9 13 11 15 5 4 6 1 1 0 27 10 15 15 17 17 16 13 13 14 6 4 8 0 1 0
Links
- Alois P. Heinz, Antidiagonals n = 0..200, flattened
Crossrefs
Programs
-
Mathematica
combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]]; t[n_,k_]:=Length[Join@@Table[combs[n,ptn],{ptn,Select[IntegerPartitions[k],UnsameQ@@#&]}]]; Table[t[k,n-k],{n,0,15},{k,0,n}]
Comments