This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364949 #16 Sep 06 2023 06:58:42 %S A364949 1,2,2,4,2,6,2,8,4,2,2,12,2,2,2,16,2,18,2,4,2,2,2,24,4,2,2,4,2,2,2,32, %T A364949 2,2,2,36,2,2,2,8,2,6,2,4,2,2,2,48,4,10,2,4,2,2,2,8,2,2,2,4,2,2,2,64, %U A364949 2,6,2,4,2,10,2,72,2,2,18,4,2,2,2,16,8,2,2,12,2,2,2,8,2,6,10,4,2,2,2,96,2,2,4,20 %N A364949 a(n) = gcd(A348717(n), A348717(A163511(n))). %H A364949 Antti Karttunen, <a href="/A364949/b364949.txt">Table of n, a(n) for n = 1..16384</a> %H A364949 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %H A364949 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %F A364949 a(n) = gcd(A348717(n), A364297(n)). %F A364949 a(2*n) = A364255(2*n) = 2*A364255(n). (Edited Sep 03 2023) %o A364949 (PARI) %o A364949 A163511(n) = if(!n,1,my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p)); %o A364949 A348717(n) = if(1==n, 1, my(f = factor(n), k = primepi(f[1, 1])-1); for (i=1, #f~, f[i, 1] = prime(primepi(f[i, 1])-k)); factorback(f)); %o A364949 A364949(n) = gcd(A348717(n),A348717(A163511(n))); %Y A364949 Cf. A163511, A348717, A364255, A364297. %K A364949 nonn %O A364949 1,2 %A A364949 _Antti Karttunen_, Aug 16 2023