cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364954 The length of the common prefix in the binary expansions of A156552(n) and A156552(A163511(n)).

This page as a plain text file.
%I A364954 #8 Sep 02 2023 16:59:53
%S A364954 0,1,2,2,1,3,3,3,2,1,1,4,2,3,2,4,1,2,1,1,1,1,1,5,1,2,1,3,3,2,5,5,1,1,
%T A364954 1,2,1,1,1,1,1,1,1,1,1,1,1,6,1,1,2,2,2,1,2,3,3,3,3,2,4,5,3,6,1,1,1,1,
%U A364954 1,1,1,2,1,1,2,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,7,2,1,2,1,2,2,2,2,5
%N A364954 The length of the common prefix in the binary expansions of A156552(n) and A156552(A163511(n)).
%H A364954 Antti Karttunen, <a href="/A364954/b364954.txt">Table of n, a(n) for n = 1..65537</a>
%o A364954 (PARI)
%o A364954 Abincompreflen(n, m) = { my(x=binary(n), y=binary(m), u=min(#x, #y)); for(i=1, u, if(x[i]!=y[i], return(i-1))); (u); };
%o A364954 A156552(n) = {my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
%o A364954 A163511(n) = if(!n,1,my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
%o A364954 A364954(n) = Abincompreflen(A156552(n), A156552(A163511(n)));
%Y A364954 Cf. A156552, A163511, A364955.
%Y A364954 Cf. also A364569.
%K A364954 nonn
%O A364954 1,3
%A A364954 _Antti Karttunen_, Sep 02 2023