cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364958 Fixed points of A356867, where A356867 is Sycamore's Doudna variant D(3).

This page as a plain text file.
%I A364958 #14 Jul 02 2025 20:30:36
%S A364958 1,2,3,6,8,9,18,24,27,54,72,81,91,162,216,243,273,486,648,729,819,
%T A364958 1458,1944,2187,2457,4374,5832,6561,7371,13122,17496,19683,22113,
%U A364958 39366,52488,59049,66339,118098,157464,177147,199017,354294,472392,531441,597051,1062882,1417176,1594323,1791153,3188646,4251528,4782969
%N A364958 Fixed points of A356867, where A356867 is Sycamore's Doudna variant D(3).
%C A364958 Conjecture: All terms are of the form k*3^n, where k = 1,2,8,91, and n >= 0. - _David James Sycamore_, Aug 16 2023
%F A364958 {k | k==A356867(k)}.
%t A364958 Block[{a, c, i, j, k, m, p, t, nn},
%t A364958   nn = 3^12; m = 1; i = 2; p = Prime[i]; c[_] = False;
%t A364958   Monitor[Reap[Do[Set[{m, k}, {1, n - p^Floor[Log[p, n]]}];
%t A364958     If[k == 0, Sow[n]; Set[{a[n], c[n]}, {n, True}],
%t A364958       While[Set[t, Prime[m] a[k]]; Or[m == i, c[t]], m++];
%t A364958       If[t == n, Sow[n]]; Set[{a[n], c[t]}, {t, True}] ],
%t A364958 {n, nn}] ][[-1, 1]], n] ] (* _Michael De Vlieger_, Jul 02 2025 *)
%o A364958 (PARI)
%o A364958 up_to = 3^14;
%o A364958 A356867list(up_to) = { my(v=vector(up_to),met=Map(),h=0,ak); for(i=1,#v,if(1==vecsum(digits(i,3)), v[i] = i; h = i, ak = v[i-h]; forprime(p=2,,if(3!=p && !mapisdefined(met,p*ak), v[i] = p*ak; break))); mapput(met,v[i],i)); (v); };
%o A364958 v356867 = A356867list(up_to);
%o A364958 A356867(n) = v356867[n];
%o A364958 isA364958(n) = (A356867(n)==n);
%Y A364958 Fixed points of A356867 and of A365390, positions of 0's in A365462.
%K A364958 nonn
%O A364958 1,2
%A A364958 _David James Sycamore_ and _Antti Karttunen_, Sep 15 2023