cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364966 Decimal expansion of the solution to exp(-x^2) = x.

This page as a plain text file.
%I A364966 #13 Feb 16 2025 08:34:06
%S A364966 6,5,2,9,1,8,6,4,0,4,1,9,2,0,4,7,1,5,5,3,5,0,8,0,7,6,7,3,5,3,1,9,6,3,
%T A364966 6,9,9,2,0,1,1,6,8,8,1,1,0,2,9,9,7,7,3,0,6,2,4,9,2,1,4,9,4,0,7,5,0,4,
%U A364966 7,2,7,6,1,9,8,0,3,8,9,2,5,5,1,1,8,2,2,5,7,1,6,0,6,8,0,5,5,9,6,8,6,8,8,8,5
%N A364966 Decimal expansion of the solution to exp(-x^2) = x.
%C A364966 Fixed point of Gaussian function.
%H A364966 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GaussianFunction.html">Gaussian Function</a>.
%H A364966 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%H A364966 Wikipedia, <a href="https://en.wikipedia.org/wiki/Gaussian_function">Gaussian function</a>.
%H A364966 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lambert_W">Lambert W function</a>.
%H A364966 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>
%F A364966 Equals sqrt(LambertW(2)/2).
%F A364966 Equals sqrt(A196515/2).
%F A364966 Equals sqrt(A202498).
%F A364966 Equals sqrt(A299624)/2.
%e A364966 0.6529186404192047...
%p A364966 Digits:=105: evalf(sqrt(LambertW(2)/2));
%t A364966 RealDigits[Sqrt[ProductLog[2]/2], 10, 105][[1]]
%o A364966 (PARI) default(realprecision, 105); sqrt(lambertw(2)/2)
%Y A364966 Cf. A196515, A202498, A299624.
%K A364966 nonn,cons
%O A364966 0,1
%A A364966 _Michal Paulovic_, Aug 14 2023