This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364970 #42 Aug 04 2024 17:02:13 %S A364970 1,5,12,26,42,73,102,152,204,278,345,464,556,693,835,1021,1175,1422, %T A364970 1613,1907,2173,2496,2773,3228,3569,4015,4445,4998,5434,6120,6617, %U A364970 7331,7965,8717,9391,10392,11096,12031,12909,14059,14921,16219,17166,18489,19711,21072,22201 %N A364970 a(n) = Sum_{k=1..n} binomial(floor(n/k)+2,3). %F A364970 a(n) = Sum_{k=1..n} binomial(k+1,2) * floor(n/k). %F A364970 G.f.: 1/(1-x) * Sum_{k>=1} x^k/(1-x^k)^3 = 1/(1-x) * Sum_{k>=1} binomial(k+1,2) * x^k/(1-x^k). %F A364970 a(n) = (A064602(n)+A024916(n))/2. - _Chai Wah Wu_, Oct 26 2023 %t A364970 Table[Sum[Binomial[Floor[n/k+2],3],{k,n}],{n,50}] (* _Harvey P. Dale_, Aug 04 2024 *) %o A364970 (PARI) a(n) = sum(k=1, n, binomial(n\k+2, 3)); %o A364970 (Python) %o A364970 from math import isqrt %o A364970 def A364970(n): return (-(s:=isqrt(n))**2*(s+1)*(s+2)+sum((q:=n//k)*(3*k*(k+1)+(q+1)*(q+2)) for k in range(1,s+1)))//6 # _Chai Wah Wu_, Oct 26 2023 %Y A364970 Partial sums of A007437. %Y A364970 Cf. A006218, A024916, A064602, A365409, A365439. %K A364970 nonn,easy %O A364970 1,2 %A A364970 _Seiichi Manyama_, Oct 23 2023