A379465 Sum of coreful divisors d | k such that gcd(d, k/d) is not in {1, d, k/d} and rad(d) = rad(k/d), where k is in A376936 and rad = A007947.
30, 42, 66, 126, 70, 78, 198, 264, 90, 234, 126, 120, 462, 312, 270, 270, 306, 150, 154, 696, 798, 936, 390, 210, 210, 290, 210, 714, 210, 286, 210, 462, 744, 240, 1710, 1224, 910, 330, 420, 2262, 390, 270, 714, 870, 1050, 294, 330, 630, 630, 2232, 378, 1620, 330
Offset: 1
Keywords
Examples
Let s = A376936. a(1) = 30 since s(1) = 216 = 12*18 = 2*6 + 3*6 = 5*rad(216), and the sum of these is 30. a(2) = 42 since s(2) = 432 = 18*24 = 3*6 + 4*6 = 7*rad(432), and the sum of these is 42. a(3) = 66 since s(3) = 648 = 12*54 = 2*6 + 9*6 = 11*rad(648), and their sum is 66. a(4) = 126 since s(4) = 864 = 18*48 = 24*36, and the sum of all these divisors is 126, etc. Note that 18 + 48 + 24 + 36 = 3*6 + 8*6 + 4*6 + 6*6 = 21*rad(864).
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
nn = 2^16; rad[x_] := Times @@ FactorInteger[x][[All, 1]]; s = Union@ Select[Flatten@ Table[a^2*b^3, {b, Surd[nn, 3]}, {a, Sqrt[nn/b^3]}], Length@ Select[FactorInteger[#][[All, -1]], # > 2 &] >= 2 &]; Map[Function[n, DivisorSum[n, # &, And[! MemberQ[{1, #1, #2}, GCD @@ {##}], rad[#1] == rad[#2]] & @@ {#, n/#} &]], s]
Comments