A364990 Coreful triperfect numbers: numbers k such that csigma(k) = 3*k, where csigma(k) is the sum of the coreful divisors of k (A057723).
3600, 25200, 28224, 39600, 46800, 61200, 68400, 82800, 104400, 111600, 133200, 141120, 147600, 154800, 169200, 190800, 212400, 219600, 241200, 255600, 262800, 277200, 284400, 298800, 310464, 320400, 327600, 349200, 363600, 366912, 370800, 385200, 392400, 406800
Offset: 1
Keywords
Examples
3600 is in the sequence since its coreful divisors are {30, 60, 90, 120, 150, 180, 240, 300, 360, 450, 600, 720, 900, 1200, 1800, 3600}, whose sum is 10800 = 3 * 3600.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- G. E. Hardy and M. V. Subbarao, Highly powerful numbers, Congress. Numer., Vol. 37 (1983), pp. 277-307. (Annotated scanned copy)
Programs
-
Mathematica
f[p_, e_] := (p^(e+1)-1)/(p-1)-1; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[500000], s[#] == 3*# &]
-
PARI
s(n) = {my(f = factor(n)); prod(i = 1, #f~, sigma(f[i, 1]^f[i, 2]) - 1);} is(n) = s(n) == 3*n;
Comments