A364999 Numbers k neither squarefree nor prime power such that both rad(k)*A119288(k) > k and rad(k)*A053669(k) > k.
12, 20, 28, 44, 52, 60, 68, 76, 84, 92, 116, 124, 132, 140, 148, 156, 164, 172, 188, 204, 212, 220, 228, 236, 244, 260, 268, 276, 284, 292, 308, 316, 332, 340, 348, 356, 364, 372, 380, 388, 404, 412, 420, 428, 436, 444, 452, 460, 476, 492, 508, 516, 524, 532, 548
Offset: 1
Keywords
Examples
Let b(n) = A126706(n), S = A360767, and T = A363082. b(1) = a(1) = 12 since p*r = 3*6 = 18 and q*r = 5*6 = 30, and both exceed 12. Indeed, 12 is in both S and T. b(2) = 18 is not in the sequence since p*r = 3*6 = 18; 18 is not in S. b(6) = 36 is not in the sequence since p*r = 3*6 = 18 and q*r = 5*6, and both do not exceed 36. b(7) = 40 is not in the sequence since p*r = 5*10 = 50 and q*r = 3*10 = 30. Though 50 > 40, 30 < 40, and is not in T, etc.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Annotated plot of b(n) = A126706(n), with n = 20*(y-1) + x at (x, -y), for x = 1..20 and y = 1..20, thus showing 400 terms. Terms in this sequence are colored black, those in A364998 in gold, in A364997 in green, and in A361098 in red.
- Michael De Vlieger, Plot of b(n), with n = 120*(y-1) + x at (x, -y), for x = 1..120 and y = 1..120, thus showing 14400 terms. This uses the same color scheme as described immediately above.
- Michael De Vlieger, Plot of b(n), with n = 1016*(y-1) + x at (x, -y), for x = 1..1016 and y = 1..1016, thus showing 1032256 terms. Terms in this sequence are colored black, else white. Demonstrates fairly constant density of a(n) in A126706 as well as a slight quasiperiodic pattern approximately mod 169.
Crossrefs
Programs
-
Mathematica
Select[Select[Range[500], Nor[PrimePowerQ[#], SquareFreeQ[#]] &], Function[{k, f}, Function[{p, q, r}, And[p r > k, q r > k]] @@ {f[[2, 1]], SelectFirst[Prime@ Range[PrimePi[f[[-1, 1]]] + 1], ! Divisible[k, #] &], Times @@ f[[All, 1]]}] @@ {#, FactorInteger[#]} &]
Formula
From Peter Munn, Feb 21 2024: (Start)
a(n) = 2*A039956(n+1).
Asymptotic density is 1/Pi^2 = 0.101321183642337... (A092742). (End)
From Michael De Vlieger, Mar 08 2024: (Start)
Comments