cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365003 Heinz numbers of integer partitions where the sum of all parts is twice the sum of distinct parts.

This page as a plain text file.
%I A365003 #8 Aug 24 2023 10:03:05
%S A365003 1,4,9,25,36,48,49,100,121,160,169,196,225,289,361,441,448,484,529,
%T A365003 567,676,750,810,841,900,961,1080,1089,1156,1200,1225,1369,1408,1440,
%U A365003 1444,1521,1681,1764,1849,1920,2116,2209,2268,2352,2601,2809,3024,3025,3159
%N A365003 Heinz numbers of integer partitions where the sum of all parts is twice the sum of distinct parts.
%C A365003 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
%F A365003 A056239(a(n)) = 2*A066328(a(n)).
%e A365003 The prime indices of 750 are {1,2,3,3,3}, with sum 12, while the distinct prime indices {1,2,3} have sum 6, so 750 is in the sequence.
%e A365003 The terms together with their prime indices begin:
%e A365003      1: {}
%e A365003      4: {1,1}
%e A365003      9: {2,2}
%e A365003     25: {3,3}
%e A365003     36: {1,1,2,2}
%e A365003     48: {1,1,1,1,2}
%e A365003     49: {4,4}
%e A365003    100: {1,1,3,3}
%e A365003    121: {5,5}
%e A365003    160: {1,1,1,1,1,3}
%e A365003    169: {6,6}
%e A365003    196: {1,1,4,4}
%e A365003    225: {2,2,3,3}
%e A365003    289: {7,7}
%e A365003    361: {8,8}
%e A365003    441: {2,2,4,4}
%e A365003    448: {1,1,1,1,1,1,4}
%t A365003 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A365003 Select[Range[1000],Total[prix[#]]==2*Total[Union[prix[#]]]&]
%Y A365003 The LHS is A056239 (sum of prime indices).
%Y A365003 The RHS is twice A066328.
%Y A365003 Partitions of this type are counted by A364910.
%Y A365003 A000041 counts integer partitions, strict A000009.
%Y A365003 A001222 counts prime indices, distinct A001221.
%Y A365003 A112798 lists prime indices, distinct A304038.
%Y A365003 A116861 counts partitions by sum and sum of distinct parts.
%Y A365003 A323092 counts double-free partitions, ranks A320340.
%Y A365003 Cf. A364350, A364839, A364906, A364907, A364911, A364916.
%K A365003 nonn
%O A365003 1,2
%A A365003 _Gus Wiseman_, Aug 23 2023