This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365003 #8 Aug 24 2023 10:03:05 %S A365003 1,4,9,25,36,48,49,100,121,160,169,196,225,289,361,441,448,484,529, %T A365003 567,676,750,810,841,900,961,1080,1089,1156,1200,1225,1369,1408,1440, %U A365003 1444,1521,1681,1764,1849,1920,2116,2209,2268,2352,2601,2809,3024,3025,3159 %N A365003 Heinz numbers of integer partitions where the sum of all parts is twice the sum of distinct parts. %C A365003 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %F A365003 A056239(a(n)) = 2*A066328(a(n)). %e A365003 The prime indices of 750 are {1,2,3,3,3}, with sum 12, while the distinct prime indices {1,2,3} have sum 6, so 750 is in the sequence. %e A365003 The terms together with their prime indices begin: %e A365003 1: {} %e A365003 4: {1,1} %e A365003 9: {2,2} %e A365003 25: {3,3} %e A365003 36: {1,1,2,2} %e A365003 48: {1,1,1,1,2} %e A365003 49: {4,4} %e A365003 100: {1,1,3,3} %e A365003 121: {5,5} %e A365003 160: {1,1,1,1,1,3} %e A365003 169: {6,6} %e A365003 196: {1,1,4,4} %e A365003 225: {2,2,3,3} %e A365003 289: {7,7} %e A365003 361: {8,8} %e A365003 441: {2,2,4,4} %e A365003 448: {1,1,1,1,1,1,4} %t A365003 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A365003 Select[Range[1000],Total[prix[#]]==2*Total[Union[prix[#]]]&] %Y A365003 The LHS is A056239 (sum of prime indices). %Y A365003 The RHS is twice A066328. %Y A365003 Partitions of this type are counted by A364910. %Y A365003 A000041 counts integer partitions, strict A000009. %Y A365003 A001222 counts prime indices, distinct A001221. %Y A365003 A112798 lists prime indices, distinct A304038. %Y A365003 A116861 counts partitions by sum and sum of distinct parts. %Y A365003 A323092 counts double-free partitions, ranks A320340. %Y A365003 Cf. A364350, A364839, A364906, A364907, A364911, A364916. %K A365003 nonn %O A365003 1,2 %A A365003 _Gus Wiseman_, Aug 23 2023