This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365004 #15 Jan 28 2024 20:41:21 %S A365004 1,1,0,2,1,0,3,2,1,0,5,4,4,1,0,7,7,8,4,1,0,11,12,17,13,6,1,0,15,19,30, %T A365004 28,18,6,1,0,22,30,53,58,50,24,8,1,0,30,45,86,109,108,70,33,8,1,0,42, %U A365004 67,139,194,223,179,107,40,10,1,0,56,97,213,328,420,394,286,143,50,10,1,0 %N A365004 Array read by antidiagonals downwards where A(n,k) is the number of ways to write n as a nonnegative linear combination of an integer partition of k. %C A365004 A way of writing n as a (nonnegative) linear combination of a finite sequence y is any sequence of pairs (k_i,y_i) such that k_i >= 0 and Sum k_i*y_i = n. For example, the pairs ((3,1),(1,1),(1,1),(0,2)) are a way of writing 5 as a linear combination of (1,1,1,2), namely 5 = 3*1 + 1*1 + 1*1 + 0*2. Of course, there are A000041(n) ways to write n as a linear combination of (1..n). %H A365004 Alois P. Heinz, <a href="/A365004/b365004.txt">Rows n = 0..200, flattened</a> %F A365004 Also the number of ways to write n-k as a *positive* linear combination of an integer partition of k. %e A365004 Array begins: %e A365004 1 1 2 3 5 7 11 %e A365004 0 1 2 4 7 12 19 %e A365004 0 1 4 8 17 30 53 %e A365004 0 1 4 13 28 58 109 %e A365004 0 1 6 18 50 108 223 %e A365004 0 1 6 24 70 179 394 %e A365004 0 1 8 33 107 286 696 %e A365004 0 1 8 40 143 428 1108 %e A365004 0 1 10 50 199 628 1754 %e A365004 0 1 10 61 254 882 2622 %e A365004 0 1 12 72 332 1215 3857 %e A365004 0 1 12 84 410 1624 5457 %e A365004 0 1 14 99 517 2142 7637 %e A365004 The A(4,2) = 6 ways: %e A365004 2*2 %e A365004 0*1+4*1 %e A365004 1*1+3*1 %e A365004 2*1+2*1 %e A365004 3*1+1*1 %e A365004 4*1+0*1 %p A365004 b:= proc(n, i, m) option remember; `if`(n=0, `if`(m=0, 1, 0), %p A365004 `if`(i<1, 0, b(n, i-1, m)+add(b(n-i, min(i, n-i), m-i*j), j=0..m/i))) %p A365004 end: %p A365004 A:= (n, k)-> b(k$2, n): %p A365004 seq(seq(A(n, d-n), n=0..d), d=0..12); # _Alois P. Heinz_, Jan 28 2024 %t A365004 nn=5; %t A365004 combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]]; %t A365004 tabv=Table[Length[Join@@Table[combs[n,ptn],{ptn,IntegerPartitions[k]}]],{n,0,nn},{k,0,nn}] %t A365004 Table[tabv[[k+1,n-k+1]],{n,0,nn},{k,0,n}] %Y A365004 Row n = 0 is A000041, strict A000009. %Y A365004 Row n = 1 is A000070. %Y A365004 Column k = 0 is A000007. %Y A365004 Column k = 1 is A000012. %Y A365004 Column k = 2 is A052928 except initial terms. %Y A365004 Antidiagonal sums are A006951. %Y A365004 The case of strict integer partitions is A116861. %Y A365004 Main diagonal is A364907. %Y A365004 The transpose is A364912, also the positive version. %Y A365004 A008284 counts partitions by length, strict A008289. %Y A365004 A364350 counts combination-free strict partitions, complement A364839. %Y A365004 A364913 counts combination-full partitions. %Y A365004 Cf. A066328, A108917, A237113, A364272, A364910, A364911, A364915, A365002. %K A365004 nonn,tabl %O A365004 0,4 %A A365004 _Gus Wiseman_, Aug 23 2023 %E A365004 Antidiagonals 8-11 from _Alois P. Heinz_, Jan 28 2024