cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365004 Array read by antidiagonals downwards where A(n,k) is the number of ways to write n as a nonnegative linear combination of an integer partition of k.

This page as a plain text file.
%I A365004 #15 Jan 28 2024 20:41:21
%S A365004 1,1,0,2,1,0,3,2,1,0,5,4,4,1,0,7,7,8,4,1,0,11,12,17,13,6,1,0,15,19,30,
%T A365004 28,18,6,1,0,22,30,53,58,50,24,8,1,0,30,45,86,109,108,70,33,8,1,0,42,
%U A365004 67,139,194,223,179,107,40,10,1,0,56,97,213,328,420,394,286,143,50,10,1,0
%N A365004 Array read by antidiagonals downwards where A(n,k) is the number of ways to write n as a nonnegative linear combination of an integer partition of k.
%C A365004 A way of writing n as a (nonnegative) linear combination of a finite sequence y is any sequence of pairs (k_i,y_i) such that k_i >= 0 and Sum k_i*y_i = n. For example, the pairs ((3,1),(1,1),(1,1),(0,2)) are a way of writing 5 as a linear combination of (1,1,1,2), namely 5 = 3*1 + 1*1 + 1*1 + 0*2. Of course, there are A000041(n) ways to write n as a linear combination of (1..n).
%H A365004 Alois P. Heinz, <a href="/A365004/b365004.txt">Rows n = 0..200, flattened</a>
%F A365004 Also the number of ways to write n-k as a *positive* linear combination of an integer partition of k.
%e A365004 Array begins:
%e A365004   1  1  2   3   5    7     11
%e A365004   0  1  2   4   7    12    19
%e A365004   0  1  4   8   17   30    53
%e A365004   0  1  4   13  28   58    109
%e A365004   0  1  6   18  50   108   223
%e A365004   0  1  6   24  70   179   394
%e A365004   0  1  8   33  107  286   696
%e A365004   0  1  8   40  143  428   1108
%e A365004   0  1  10  50  199  628   1754
%e A365004   0  1  10  61  254  882   2622
%e A365004   0  1  12  72  332  1215  3857
%e A365004   0  1  12  84  410  1624  5457
%e A365004   0  1  14  99  517  2142  7637
%e A365004 The A(4,2) = 6 ways:
%e A365004   2*2
%e A365004   0*1+4*1
%e A365004   1*1+3*1
%e A365004   2*1+2*1
%e A365004   3*1+1*1
%e A365004   4*1+0*1
%p A365004 b:= proc(n, i, m) option remember; `if`(n=0, `if`(m=0, 1, 0),
%p A365004      `if`(i<1, 0, b(n, i-1, m)+add(b(n-i, min(i, n-i), m-i*j), j=0..m/i)))
%p A365004     end:
%p A365004 A:= (n, k)-> b(k$2, n):
%p A365004 seq(seq(A(n, d-n), n=0..d), d=0..12);  # _Alois P. Heinz_, Jan 28 2024
%t A365004 nn=5;
%t A365004 combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
%t A365004 tabv=Table[Length[Join@@Table[combs[n,ptn],{ptn,IntegerPartitions[k]}]],{n,0,nn},{k,0,nn}]
%t A365004 Table[tabv[[k+1,n-k+1]],{n,0,nn},{k,0,n}]
%Y A365004 Row n = 0 is A000041, strict A000009.
%Y A365004 Row n = 1 is A000070.
%Y A365004 Column k = 0 is A000007.
%Y A365004 Column k = 1 is A000012.
%Y A365004 Column k = 2 is A052928 except initial terms.
%Y A365004 Antidiagonal sums are A006951.
%Y A365004 The case of strict integer partitions is A116861.
%Y A365004 Main diagonal is A364907.
%Y A365004 The transpose is A364912, also the positive version.
%Y A365004 A008284 counts partitions by length, strict A008289.
%Y A365004 A364350 counts combination-free strict partitions, complement A364839.
%Y A365004 A364913 counts combination-full partitions.
%Y A365004 Cf. A066328, A108917, A237113, A364272, A364910, A364911, A364915, A365002.
%K A365004 nonn,tabl
%O A365004 0,4
%A A365004 _Gus Wiseman_, Aug 23 2023
%E A365004 Antidiagonals 8-11 from _Alois P. Heinz_, Jan 28 2024