This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365006 #19 Sep 20 2023 18:16:31 %S A365006 1,1,1,1,1,2,1,3,2,4,4,8,4,11,9,16,14,25,20,37,31,49,47,73,64,101,96, %T A365006 135,133,190,181,256,253,336,342,453,452,596,609,771,803,1014,1041, %U A365006 1309,1362,1674,1760,2151,2249,2736,2884,3449,3661,4366,4615,5486,5825 %N A365006 Number of strict integer partitions of n such that no part can be written as a (strictly) positive linear combination of the others. %C A365006 We consider (for example) that 2x + y + 3z is a positive linear combination of (x,y,z), but 2x + y is not, as the coefficient of z is 0. %H A365006 Chai Wah Wu, <a href="/A365006/b365006.txt">Table of n, a(n) for n = 0..109</a> %e A365006 The a(8) = 2 through a(13) = 11 partitions: %e A365006 (8) (9) (10) (11) (12) (13) %e A365006 (5,3) (5,4) (6,4) (6,5) (7,5) (7,6) %e A365006 (7,2) (7,3) (7,4) (5,4,3) (8,5) %e A365006 (4,3,2) (4,3,2,1) (8,3) (5,4,2,1) (9,4) %e A365006 (9,2) (10,3) %e A365006 (5,4,2) (11,2) %e A365006 (6,3,2) (6,4,3) %e A365006 (5,3,2,1) (6,5,2) %e A365006 (7,4,2) %e A365006 (5,4,3,1) %e A365006 (6,4,2,1) %t A365006 combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]]; %t A365006 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&And@@Table[combp[#[[k]],Delete[#,k]]=={},{k,Length[#]}]&]],{n,0,30}] %o A365006 (Python) %o A365006 from sympy.utilities.iterables import partitions %o A365006 def A365006(n): %o A365006 if n <= 1: return 1 %o A365006 alist = [set(tuple(sorted(set(p))) for p in partitions(i)) for i in range(n)] %o A365006 c = 1 %o A365006 for p in partitions(n,k=n-1): %o A365006 if max(p.values()) == 1: %o A365006 s = set(p) %o A365006 for q in s: %o A365006 if tuple(sorted(s-{q})) in alist[q]: %o A365006 break %o A365006 else: %o A365006 c += 1 %o A365006 return c # _Chai Wah Wu_, Sep 20 2023 %Y A365006 The nonnegative version for subsets appears to be A124506. %Y A365006 For sums instead of combinations we have A364349, binary A364533. %Y A365006 The nonnegative version is A364350, complement A364839. %Y A365006 For subsets instead of partitions we have A365044, complement A365043. %Y A365006 The non-strict version is A365072, nonnegative A364915. %Y A365006 A000041 counts integer partitions, strict A000009. %Y A365006 A008284 counts partitions by length, strict A008289. %Y A365006 A116861 and A364916 count linear combinations of strict partitions. %Y A365006 A364912 counts linear combinations of partitions of k. %Y A365006 Cf. A151897, A237113, A236912, A237667, A275972, A363226, A364272, A364913, A365004, A365068. %K A365006 nonn %O A365006 0,6 %A A365006 _Gus Wiseman_, Aug 31 2023 %E A365006 a(31)-a(56) from _Chai Wah Wu_, Sep 20 2023