cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365012 E.g.f. satisfies A(x) = exp( x*A(x)/(1 - x * A(x)^2) ).

This page as a plain text file.
%I A365012 #12 Aug 19 2023 06:29:06
%S A365012 1,1,5,52,833,18116,498907,16648402,653034545,29450331928,
%T A365012 1501456530131,85398143019014,5361130115439529,368227694339818132,
%U A365012 27468201247134068891,2211469648218676671466,191131823105565504395873,17650493961604405811144624
%N A365012 E.g.f. satisfies A(x) = exp( x*A(x)/(1 - x * A(x)^2) ).
%H A365012 Michael De Vlieger, <a href="/A365012/b365012.txt">Table of n, a(n) for n = 0..348</a>
%F A365012 a(n) = n! * Sum_{k=0..n} (2*n-k+1)^(k-1) * binomial(n-1,n-k)/k!.
%t A365012 Array[#!*Sum[ (2 # - k + 1)^(k - 1)*Binomial[# - 1, # - k]/k!, {k, 0, #}] &, 19, 0] (* _Michael De Vlieger_, Aug 18 2023 *)
%o A365012 (PARI) a(n) = n!*sum(k=0, n, (2*n-k+1)^(k-1)*binomial(n-1, n-k)/k!);
%Y A365012 Cf. A052873, A365013.
%K A365012 nonn
%O A365012 0,3
%A A365012 _Seiichi Manyama_, Aug 15 2023