cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365014 E.g.f. satisfies A(x) = exp( x*A(x)^2/(1 - x * A(x)^3) ).

This page as a plain text file.
%I A365014 #13 Aug 19 2023 06:28:49
%S A365014 1,1,7,103,2349,72961,2874793,137399487,7724650601,499542475105,
%T A365014 36532938744621,2981405776356679,268605245211618637,
%U A365014 26480489709604968129,2835590837094928349921,327748240537910056251151,40669893396736296241364817,5392699633877586027282801217
%N A365014 E.g.f. satisfies A(x) = exp( x*A(x)^2/(1 - x * A(x)^3) ).
%H A365014 Michael De Vlieger, <a href="/A365014/b365014.txt">Table of n, a(n) for n = 0..332</a>
%F A365014 a(n) = n! * Sum_{k=0..n} (3*n-k+1)^(k-1) * binomial(n-1,n-k)/k!.
%t A365014 Array[#!*Sum[ (3 # - k + 1)^(k - 1)*Binomial[# - 1, # - k]/k!, {k, 0, #}] &, 18, 0] (* _Michael De Vlieger_, Aug 18 2023 *)
%o A365014 (PARI) a(n) = n!*sum(k=0, n, (3*n-k+1)^(k-1)*binomial(n-1, n-k)/k!);
%Y A365014 Cf. A361093, A361142.
%K A365014 nonn
%O A365014 0,3
%A A365014 _Seiichi Manyama_, Aug 15 2023