cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365018 a(n) is the least positive integer not already in the sequence whose binary expansion is not the concatenation of any two earlier terms.

This page as a plain text file.
%I A365018 #51 Nov 05 2023 15:00:07
%S A365018 1,2,3,4,8,10,13,15,16,22,23,25,30,32,36,37,38,39,41,44,46,49,50,52,
%T A365018 53,59,60,64,69,70,71,76,78,81,82,85,88,92,97,98,104,106,109,111,115,
%U A365018 120,125,127,128,133,134,135,136,137,140,142,145,148,149,152,156,161,162,170,176,182
%N A365018 a(n) is the least positive integer not already in the sequence whose binary expansion is not the concatenation of any two earlier terms.
%C A365018 a(n) first differs from A190896(n-1) at n=10: a(10)=22, whereas A190896(9)=19.
%H A365018 Attila Kiss, <a href="/A365018/a365018.java.txt">Java code to generate terms</a>.
%e A365018 5 is not a term since its binary expansion is "101", which is the concatenation of earlier a(2)="10" and a(1)="1".
%e A365018 19 is not a term since its binary expansion is "10011", which is the concatenation of a(4)="100" and a(3)="11".
%t A365018 conc[x_, y_] := FromDigits[Flatten@IntegerDigits[{x, y}, 2], 2]; a[1] = 1; a[n_] := a[n] = Module[{k = a[n - 1] + 1, v = Array[a, n - 1], c}, c = conc @@@ Select[Tuples[v, {2}], UnsameQ @@ # &]; While[! FreeQ[c, k], k++]; k]; Array[a, 60] (* _Amiram Eldar_, Sep 29 2023 *)
%o A365018 (Python)
%o A365018 from itertools import islice
%o A365018 def agen(): # generator of terms
%o A365018     an, bins, concats = 1, {"1"}, set()
%o A365018     while True:
%o A365018         yield an
%o A365018         while (bn:=bin(an:=an+1)[2:]) in concats: pass
%o A365018         concats |= {bn+bi for bi in bins} | {bi+bn for bi in bins}
%o A365018         bins.add(bn)
%o A365018 print(list(islice(agen(),62))) # _Michael S. Branicky_, Sep 29 2023
%Y A365018 Cf. A364871, A190896.
%K A365018 nonn,base
%O A365018 1,2
%A A365018 _Attila Kiss_, Aug 16 2023