A365024 Starts of runs of 3 consecutive Carmichael numbers (A002997) without a non-prime-power weak Carmichael number (A087442) between any two consecutive members.
656601, 5968873, 9582145, 45877861, 67653433, 84311569, 171454321, 171679561, 193708801, 193910977, 230630401, 357277921, 367804801, 393122521, 393513121, 393716701, 395044651, 557160241, 703995733, 710382401, 775368901, 832060801, 833608321, 834244501, 939947009
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..214
- Amiram Eldar, List of triples.
- Mauro Fiorentini, Carmichael gemelli (numeri di) (in Italian).
- Romeo Meštrović, Generalizations of Carmichael numbers I, arXiv:1305.1867 [math.NT], 2013.
Programs
-
Mathematica
npwcQ[n_] := Length[(p = FactorInteger[n][[;; , 1]])] > 1 && AllTrue[p, Divisible[n - 1, # - 1] &]; (* A087442 *) seq[indmax_] := Module[{carmichaels = Cases[Import["https://oeis.org/A002997/b002997.txt", "Table"], {, }][[;; , 2]], s1 = s2 = {}, c1, c2, i}, Do[c1 = carmichaels[[k]] + 2; c2 = carmichaels[[k + 1]] - 2; While[c1 < c2, If[npwcQ[c1], Break[]]; c1 += 2]; If[c1 == c2, AppendTo[s1, carmichaels[[k]]]; AppendTo[s2, carmichaels[[k + 1]]]], {k, 1, Min[indmax, Length[carmichaels] - 1]}]; i = Position[Rest[s1] - Most[s2], 0] // Flatten; s1[[i]]]; seq[200]
Comments