cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365036 E.g.f. satisfies A(x) = exp(x * (1 + x/A(x)^2)).

This page as a plain text file.
%I A365036 #13 Feb 16 2025 08:34:06
%S A365036 1,1,3,-5,-23,521,-1829,-71021,1319697,5905297,-683965709,8664974891,
%T A365036 311864420473,-13981842414695,6694007756619,16448800124183491,
%U A365036 -448649039951220959,-13236887251789967071,1210629233913421852387,-12065049302884271631269
%N A365036 E.g.f. satisfies A(x) = exp(x * (1 + x/A(x)^2)).
%H A365036 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A365036 E.g.f.: exp( x + LambertW(2*x^2*exp(-2*x))/2 ).
%F A365036 a(n) = n! * Sum_{k=0..n} (-2*n+2*k+1)^(k-1) * binomial(k,n-k)/k!.
%o A365036 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x+lambertw(2*x^2*exp(-2*x))/2)))
%Y A365036 Cf. A125500, A143768, A363354, A363529, A365035, A365037.
%Y A365036 Cf. A361091.
%K A365036 sign
%O A365036 0,3
%A A365036 _Seiichi Manyama_, Aug 17 2023