cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365037 E.g.f. satisfies A(x) = exp(x * (1 + x/A(x)^3)).

This page as a plain text file.
%I A365037 #11 Feb 16 2025 08:34:06
%S A365037 1,1,3,-11,-11,1341,-14339,-168923,8905065,-85313735,-4604578919,
%T A365037 197455645641,-273728455571,-267002430142187,9427821270512373,
%U A365037 178475402982086701,-28273343910563670959,713736314833387866225,51907546734507018043057
%N A365037 E.g.f. satisfies A(x) = exp(x * (1 + x/A(x)^3)).
%H A365037 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A365037 E.g.f.: exp( x + LambertW(3*x^2*exp(-3*x))/3 ).
%F A365037 a(n) = n! * Sum_{k=0..n} (-3*n+3*k+1)^(k-1) * binomial(k,n-k)/k!.
%o A365037 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x+lambertw(3*x^2*exp(-3*x))/3)))
%Y A365037 Cf. A125500, A143768, A363354, A363529, A365035, A365036.
%Y A365037 Cf. A361092.
%K A365037 sign
%O A365037 0,3
%A A365037 _Seiichi Manyama_, Aug 17 2023