cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365039 E.g.f. satisfies A(x) = exp(x * (1 + x)/A(x)^2).

This page as a plain text file.
%I A365039 #11 Feb 16 2025 08:34:06
%S A365039 1,1,-1,7,-79,1201,-22961,530167,-14372191,447825889,-15776617249,
%T A365039 620209389031,-26918670325295,1278598424153233,-65973615445792081,
%U A365039 3674793950748867031,-219773335672937703871,14046128883828030510529,-955409650156763223984449
%N A365039 E.g.f. satisfies A(x) = exp(x * (1 + x)/A(x)^2).
%H A365039 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A365039 E.g.f.: exp( LambertW(2*x * (1+x))/2 ).
%F A365039 a(n) = n! * Sum_{k=0..n} (-2*k+1)^(k-1) * binomial(k,n-k)/k!.
%o A365039 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(2*x*(1+x))/2)))
%Y A365039 Cf. A362771, A362773, A363478, A365038, A365040.
%Y A365039 Cf. A361068.
%K A365039 sign,easy
%O A365039 0,4
%A A365039 _Seiichi Manyama_, Aug 18 2023