This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365042 #15 Dec 13 2024 09:37:37 %S A365042 0,0,1,2,4,5,9,11,17,21,29,36,50,60,78,95,123,147,185,221,274,325,399, %T A365042 472,574,672,810,945,1131,1316,1557,1812,2137,2462,2892,3322,3881, %U A365042 4460,5176,5916,6846,7817,8993,10250,11765,13333,15280,17308,19731,22306 %N A365042 Number of subsets of {1..n} containing n such that some element can be written as a positive linear combination of the others. %C A365042 Sets of this type may be called "positive combination-full". %C A365042 Also subsets of {1..n} containing n whose greatest element can be written as a positive linear combination of the others. %H A365042 Steven R. Finch, <a href="/A066062/a066062.pdf">Monoids of natural numbers</a>, March 17, 2009. %F A365042 a(n) = A088314(n) - 1. %e A365042 The subset {3,4,10} has 10 = 2*3 + 1*4 so is counted under a(10). %e A365042 The a(0) = 0 through a(7) = 11 subsets: %e A365042 . . {1,2} {1,3} {1,4} {1,5} {1,6} {1,7} %e A365042 {1,2,3} {2,4} {1,2,5} {2,6} {1,2,7} %e A365042 {1,2,4} {1,3,5} {3,6} {1,3,7} %e A365042 {1,3,4} {1,4,5} {1,2,6} {1,4,7} %e A365042 {2,3,5} {1,3,6} {1,5,7} %e A365042 {1,4,6} {1,6,7} %e A365042 {1,5,6} {2,3,7} %e A365042 {2,4,6} {2,5,7} %e A365042 {1,2,3,6} {3,4,7} %e A365042 {1,2,3,7} %e A365042 {1,2,4,7} %t A365042 combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]]; %t A365042 Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Or@@Table[combp[#[[k]],Union[Delete[#,k]]]!={},{k,Length[#]}]&]],{n,0,10}] %Y A365042 The nonnegative complement is A124506, first differences of A326083. %Y A365042 The binary complement is A288728, first differences of A007865. %Y A365042 First differences of A365043. %Y A365042 The complement is counted by A365045, first differences of A365044. %Y A365042 The nonnegative version is A365046, first differences of A364914. %Y A365042 Without re-usable parts we have A365069, first differences of A364534. %Y A365042 The binary version is A365070, first differences of A093971. %Y A365042 A085489 and A364755 count subsets with no sum of two distinct elements. %Y A365042 A088314 counts sets that can be linearly combined to obtain n. %Y A365042 A088809 and A364756 count subsets with some sum of two distinct elements. %Y A365042 A364350 counts combination-free strict partitions, complement A364839. %Y A365042 A364913 counts combination-full partitions. %Y A365042 Cf. A151897, A237113, A237668, A308546, A324736, A326020, A326080, A364272. %K A365042 nonn %O A365042 0,4 %A A365042 _Gus Wiseman_, Aug 23 2023