cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365043 Number of subsets of {1..n} whose greatest element can be written as a (strictly) positive linear combination of the others.

Original entry on oeis.org

0, 0, 1, 3, 7, 12, 21, 32, 49, 70, 99, 135, 185, 245, 323, 418, 541, 688, 873, 1094, 1368, 1693, 2092, 2564, 3138, 3810, 4620, 5565, 6696, 8012, 9569, 11381, 13518, 15980, 18872, 22194, 26075, 30535, 35711, 41627, 48473, 56290, 65283, 75533, 87298, 100631, 115911, 133219
Offset: 0

Views

Author

Gus Wiseman, Aug 25 2023

Keywords

Comments

Sets of this type may be called "positive combination-full".
Also subsets of {1..n} such that some element can be written as a (strictly) positive linear combination of the others.

Examples

			The subset S = {3,4,9} has 9 = 3*3 + 0*4, but this is not strictly positive, so S is not counted under a(9).
The subset S = {3,4,10} has 10 = 2*3 + 1*4, so S is counted under a(10).
The a(0) = 0 through a(5) = 12 subsets:
  .  .  {1,2}  {1,2}    {1,2}    {1,2}
               {1,3}    {1,3}    {1,3}
               {1,2,3}  {1,4}    {1,4}
                        {2,4}    {1,5}
                        {1,2,3}  {2,4}
                        {1,2,4}  {1,2,3}
                        {1,3,4}  {1,2,4}
                                 {1,2,5}
                                 {1,3,4}
                                 {1,3,5}
                                 {1,4,5}
                                 {2,3,5}
		

Crossrefs

The binary complement is A007865, first differences A288728.
The binary version is A093971, first differences A365070.
The nonnegative complement is A326083, first differences A124506.
The nonnegative version is A364914, first differences A365046.
First differences are A365042.
The complement is counted by A365044, first differences A365045.
Without re-usable parts we have A364534, first differences A365069.
A085489 and A364755 count subsets with no sum of two distinct elements.
A088809 and A364756 count subsets with some sum of two distinct elements.
A364350 counts combination-free strict partitions, complement A364839.
A364913 counts combination-full partitions.

Programs

  • Mathematica
    combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Rest[Subsets[Range[n]]],combp[Last[#],Union[Most[#]]]!={}&]],{n,0,10}]
  • Python
    from itertools import combinations
    from sympy.utilities.iterables import partitions
    def A365043(n):
        mlist = tuple({tuple(sorted(p.keys())) for p in partitions(m,k=m-1)} for m in range(1,n+1))
        return sum(1 for k in range(2,n+1) for w in combinations(range(1,n+1),k) if w[:-1] in mlist[w[-1]-1]) # Chai Wah Wu, Nov 20 2023

Formula

a(n) = 2^n - A365044(n).

Extensions

a(15)-a(35) from Chai Wah Wu, Nov 20 2023
More terms from Bert Dobbelaere, Apr 28 2025