This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365044 #24 Dec 13 2024 09:37:45 %S A365044 1,2,3,5,9,20,43,96,207,442,925,1913,3911,7947,16061,32350,64995, %T A365044 130384,261271,523194,1047208,2095459,4192212,8386044,16774078, %U A365044 33550622,67104244,134212163,268428760,536862900,1073732255,2147472267,4294953778,8589918612,17179850312 %N A365044 Number of subsets of {1..n} whose greatest element cannot be written as a (strictly) positive linear combination of the others. %C A365044 Sets of this type may be called "positive combination-free". %C A365044 Also subsets of {1..n} such that no element can be written as a (strictly) positive linear combination of the others. %H A365044 Steven R. Finch, <a href="/A066062/a066062.pdf">Monoids of natural numbers</a>, March 17, 2009. %F A365044 a(n) = 2^n - A365043(n). %e A365044 The subset S = {3,5,6,8} has 6 = 2*3 + 0*5 + 0*8 and 8 = 1*3 + 1*5 + 0*6 but neither of these is strictly positive, so S is counted under a(8). %e A365044 The a(0) = 1 through a(5) = 20 subsets: %e A365044 {} {} {} {} {} {} %e A365044 {1} {1} {1} {1} {1} %e A365044 {2} {2} {2} {2} %e A365044 {3} {3} {3} %e A365044 {2,3} {4} {4} %e A365044 {2,3} {5} %e A365044 {3,4} {2,3} %e A365044 {2,3,4} {2,5} %e A365044 {1,2,3,4} {3,4} %e A365044 {3,5} %e A365044 {4,5} %e A365044 {2,3,4} %e A365044 {2,4,5} %e A365044 {3,4,5} %e A365044 {1,2,3,4} %e A365044 {1,2,3,5} %e A365044 {1,2,4,5} %e A365044 {1,3,4,5} %e A365044 {2,3,4,5} %e A365044 {1,2,3,4,5} %t A365044 combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]]; %t A365044 Table[Length[Select[Subsets[Range[n]],And@@Table[combp[Last[#],Union[Most[#]]]=={},{k,Length[#]}]&]],{n,0,10}] %o A365044 (Python) %o A365044 from itertools import combinations %o A365044 from sympy.utilities.iterables import partitions %o A365044 def A365044(n): %o A365044 mlist = tuple({tuple(sorted(p.keys())) for p in partitions(m,k=m-1)} for m in range(1,n+1)) %o A365044 return n+1+sum(1 for k in range(2,n+1) for w in combinations(range(1,n+1),k) if w[:-1] not in mlist[w[-1]-1]) # _Chai Wah Wu_, Nov 20 2023 %Y A365044 The binary version is A007865, first differences A288728. %Y A365044 The binary complement is A093971, first differences A365070. %Y A365044 Without re-usable parts we have A151897, first differences A365071. %Y A365044 The nonnegative version is A326083, first differences A124506. %Y A365044 A subclass is A341507. %Y A365044 The nonnegative complement is A364914, first differences A365046. %Y A365044 The complement is counted by A365043, first differences A365042. %Y A365044 First differences are A365045. %Y A365044 A085489 and A364755 count subsets w/o the sum of two distinct elements. %Y A365044 A088809 and A364756 count subsets with the sum of two distinct elements. %Y A365044 A364350 counts combination-free strict partitions, complement A364839. %Y A365044 A364913 counts combination-full partitions. %Y A365044 Cf. A006951, A237113, A237668, A308546, A324736, A326020, A326080, A364272, A364349, A364534, A365069. %K A365044 nonn %O A365044 0,2 %A A365044 _Gus Wiseman_, Aug 26 2023 %E A365044 a(15)-a(34) from _Chai Wah Wu_, Nov 20 2023