This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365045 #17 Dec 13 2024 09:37:26 %S A365045 0,1,1,2,4,11,23,53,111,235,483,988,1998,4036,8114,16289,32645,65389, %T A365045 130887,261923,524014,1048251,2096753,4193832,8388034,16776544, %U A365045 33553622,67107919,134216597,268434140,536869355,1073740012,2147481511,4294964834,8589931700 %N A365045 Number of subsets of {1..n} containing n such that no element can be written as a positive linear combination of the others. %C A365045 Also subsets of {1..n} containing n whose greatest element cannot be written as a positive linear combination of the others. %H A365045 Steven R. Finch, <a href="/A066062/a066062.pdf">Monoids of natural numbers</a>, March 17, 2009. %F A365045 a(n) = A070880(n) + 1 for n > 0. %e A365045 The subset {3,4,10} has 10 = 2*3 + 1*4 so is not counted under a(10). %e A365045 The a(0) = 0 through a(5) = 11 subsets: %e A365045 . {1} {2} {3} {4} {5} %e A365045 {2,3} {3,4} {2,5} %e A365045 {2,3,4} {3,5} %e A365045 {1,2,3,4} {4,5} %e A365045 {2,4,5} %e A365045 {3,4,5} %e A365045 {1,2,3,5} %e A365045 {1,2,4,5} %e A365045 {1,3,4,5} %e A365045 {2,3,4,5} %e A365045 {1,2,3,4,5} %t A365045 combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]]; %t A365045 Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&And@@Table[combp[#[[k]],Union[Delete[#,k]]]=={},{k,Length[#]}]&]],{n,0,10}] %Y A365045 The nonempty case is A070880. %Y A365045 The nonnegative version is A124506, first differences of A326083. %Y A365045 The binary version is A288728, first differences of A007865. %Y A365045 A subclass is A341507. %Y A365045 The complement is counted by A365042, first differences of A365043. %Y A365045 First differences of A365044. %Y A365045 The nonnegative complement is A365046, first differences of A364914. %Y A365045 The binary complement is A365070, first differences of A093971. %Y A365045 Without re-usable parts we have A365071, first differences of A151897. %Y A365045 A085489 and A364755 count subsets w/o the sum of two distinct elements. %Y A365045 A088809 and A364756 count subsets with the sum of two distinct elements. %Y A365045 A364350 counts combination-free strict partitions, complement A364839. %Y A365045 A364913 counts combination-full partitions. %Y A365045 Cf. A237113, A237668, A308546, A324736, A326020, A326080, A364272, A364349, A364534, A365069. %K A365045 nonn %O A365045 0,4 %A A365045 _Gus Wiseman_, Aug 24 2023