cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A366907 a(n) is the number of geometric progressions with three or more terms, with rational ratio > 0, formed by the terms a(n-1), a(n-1-k), a(n-1-2*k),...,a(n-1-t*k) where k>=1, t>=2, and n-1-t*k>=0.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 2, 0, 4, 1, 0, 1, 0, 0, 2, 0, 3, 0, 3, 0, 6, 0, 7, 0, 9, 0, 13, 0, 12, 0, 15, 0, 21, 0, 20, 0, 22, 0, 30, 0, 30, 0, 31, 0, 38, 0, 39, 0, 43, 0, 47, 0, 46, 0, 53, 0, 61, 0, 57, 0, 59, 0, 69, 0, 72, 0, 72, 0, 78, 0, 79, 0, 84, 0, 91, 0, 90, 0, 96, 0, 103, 0, 98, 0, 105, 0, 116
Offset: 0

Views

Author

Scott R. Shannon, Oct 27 2023

Keywords

Comments

The sequence is dominated by the count of progressions consisting of three or more 0's. Very rarely the count of these zero-progressions forms a new progression of its own, which forms a short series of small terms and resets the subsequent count of the zero-progressions to a lower value. In the first 10^5 terms this only happens three times - at a(10) (which is not readily noticeable on the graph of the terms), a(644), and a(61434). See the attached images.

Examples

			a(3) = 1 and a(2) = a(1) = a(0) = 0 form a progression with ratio 1 separated by one term.
a(7) = 2 as a(6) = a(4) = a(2) = 0 form a three-term progression with ratio 1 separated by two terms, while a(6) = a(4) = a(2) = a(0) = 0 form a four-term progression with ratio 1 separated by two terms.
a(10) = 1 as a(9) = 4, a(7) = 2, a(5) = 1 form a three-term progression with ratio 1/2 separated by two terms.
		

Crossrefs

Showing 1-1 of 1 results.