This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365051 #10 Aug 19 2023 16:12:37 %S A365051 40,16,192,1152,4608,18432 %N A365051 a(n) = |Aut^n(C_40)|: order of the group obtained by applying G -> Aut(G) n times to the cyclic group of order 40. %C A365051 m = 40 is the next case after m = 32 where the sequence {Aut^n(C_m):n>=0} is not known to stabilize after some n. See A364904. %H A365051 G. Muller, <a href="https://mathoverflow.net/q/5635/34538">Does Aut(Aut(...Aut(G)...)) stabilize?</a>, MathOverflow (2009). %H A365051 S. Palcoux, <a href="https://mathoverflow.net/q/351593/34538">On the iterated automorphism groups of the cyclic groups</a>, MathOverflow (2020). %e A365051 Aut(C_40) = C_2 X C_2 X C_4, so a(1) = 16; %e A365051 Aut^2(C_40) = SmallGroup(192,1493), so a(2) = 192; %e A365051 Aut^3(C_40) = SmallGroup(192,1493), so a(3) = 1152. %o A365051 (GAP) A365051 := function(n) %o A365051 local G, i, L; %o A365051 G := CyclicGroup(32); %o A365051 for i in [1..n] do %o A365051 G := AutomorphismGroup(G); %o A365051 if i = n then return break; fi; %o A365051 L := DirectFactorsOfGroup(G); %o A365051 if List(L, x->IdGroupsAvailable(Size(x))) = List(L, x->true) then %o A365051 L := List(L, x->IdGroup(x)); %o A365051 G := DirectProduct(List(L, x->SmallGroup(x))); # It's more efficient to operate on abstract groups when the abstract structure is available %o A365051 fi; od; %o A365051 return Size(G); %o A365051 end; %Y A365051 Cf. A364904 ({Aut^n(C_32)}), A364917, A331921. %K A365051 nonn,hard,more %O A365051 0,1 %A A365051 _Jianing Song_, Aug 18 2023