cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365067 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n whose odd parts sum to k, for k ranging from mod(n,2) to n in steps of 2.

This page as a plain text file.
%I A365067 #11 Oct 23 2023 21:43:23
%S A365067 1,1,1,1,1,2,2,1,2,2,2,3,3,2,2,4,3,4,3,5,5,3,4,4,6,5,6,6,5,8,7,5,6,8,
%T A365067 6,10,7,10,9,10,8,12,11,7,10,12,12,10,15,11,14,15,15,16,12,18,15,11,
%U A365067 14,20,18,20,15,22,15,22,21,25,24,24,18,27
%N A365067 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n whose odd parts sum to k, for k ranging from mod(n,2) to n in steps of 2.
%C A365067 The version for all k = 0..n is A113685 (including zeros).
%F A365067 T(n,k) = A000009(k) * A000041((n-k)/2).
%e A365067 Triangle begins:
%e A365067    1
%e A365067    1
%e A365067    1  1
%e A365067    1  2
%e A365067    2  1  2
%e A365067    2  2  3
%e A365067    3  2  2  4
%e A365067    3  4  3  5
%e A365067    5  3  4  4  6
%e A365067    5  6  6  5  8
%e A365067    7  5  6  8  6 10
%e A365067    7 10  9 10  8 12
%e A365067   11  7 10 12 12 10 15
%e A365067   11 14 15 15 16 12 18
%e A365067   15 11 14 20 18 20 15 22
%e A365067   15 22 21 25 24 24 18 27
%e A365067 Row n = 8 counts the following partitions:
%e A365067   (8)     (611)    (431)     (521)      (71)
%e A365067   (62)    (4211)   (41111)   (332)      (53)
%e A365067   (44)    (22211)  (3221)    (32111)    (5111)
%e A365067   (422)            (221111)  (2111111)  (3311)
%e A365067   (2222)                                (311111)
%e A365067                                         (11111111)
%e A365067 Row n = 9 counts the following partitions:
%e A365067   (81)     (63)      (54)       (72)        (9)
%e A365067   (621)    (6111)    (522)      (5211)      (711)
%e A365067   (441)    (432)     (4311)     (3321)      (531)
%e A365067   (4221)   (42111)   (411111)   (321111)    (51111)
%e A365067   (22221)  (3222)    (32211)    (21111111)  (333)
%e A365067            (222111)  (2211111)              (33111)
%e A365067                                             (3111111)
%e A365067                                             (111111111)
%t A365067 Table[Length[Select[IntegerPartitions[n], Total[Select[#,OddQ]]==k&]],{n,0,15},{k,Mod[n,2],n,2}]
%Y A365067 Row sums are A000041.
%Y A365067 The version including all k is A113685, even version A113686.
%Y A365067 Column k = 1 is A119620.
%Y A365067 The even version and the reverse version are both A174713.
%Y A365067 For odd-indexed instead of odd parts we have A346697, even version A346698.
%Y A365067 The corresponding rank statistic is A366528, even version A366531.
%Y A365067 A000009 counts partitions into odd parts, ranks A066208.
%Y A365067 A086543 counts partitions with odd parts, ranks A366322.
%Y A365067 A239261 counts partitions with (sum of odd parts) = (sum of even parts).
%Y A365067 Cf. A035363, A045931, A053253, A066967, A130780, A171966, A241638, A268335, A325698, A366533.
%K A365067 nonn,tabf
%O A365067 0,6
%A A365067 _Gus Wiseman_, Oct 16 2023