This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365067 #11 Oct 23 2023 21:43:23 %S A365067 1,1,1,1,1,2,2,1,2,2,2,3,3,2,2,4,3,4,3,5,5,3,4,4,6,5,6,6,5,8,7,5,6,8, %T A365067 6,10,7,10,9,10,8,12,11,7,10,12,12,10,15,11,14,15,15,16,12,18,15,11, %U A365067 14,20,18,20,15,22,15,22,21,25,24,24,18,27 %N A365067 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n whose odd parts sum to k, for k ranging from mod(n,2) to n in steps of 2. %C A365067 The version for all k = 0..n is A113685 (including zeros). %F A365067 T(n,k) = A000009(k) * A000041((n-k)/2). %e A365067 Triangle begins: %e A365067 1 %e A365067 1 %e A365067 1 1 %e A365067 1 2 %e A365067 2 1 2 %e A365067 2 2 3 %e A365067 3 2 2 4 %e A365067 3 4 3 5 %e A365067 5 3 4 4 6 %e A365067 5 6 6 5 8 %e A365067 7 5 6 8 6 10 %e A365067 7 10 9 10 8 12 %e A365067 11 7 10 12 12 10 15 %e A365067 11 14 15 15 16 12 18 %e A365067 15 11 14 20 18 20 15 22 %e A365067 15 22 21 25 24 24 18 27 %e A365067 Row n = 8 counts the following partitions: %e A365067 (8) (611) (431) (521) (71) %e A365067 (62) (4211) (41111) (332) (53) %e A365067 (44) (22211) (3221) (32111) (5111) %e A365067 (422) (221111) (2111111) (3311) %e A365067 (2222) (311111) %e A365067 (11111111) %e A365067 Row n = 9 counts the following partitions: %e A365067 (81) (63) (54) (72) (9) %e A365067 (621) (6111) (522) (5211) (711) %e A365067 (441) (432) (4311) (3321) (531) %e A365067 (4221) (42111) (411111) (321111) (51111) %e A365067 (22221) (3222) (32211) (21111111) (333) %e A365067 (222111) (2211111) (33111) %e A365067 (3111111) %e A365067 (111111111) %t A365067 Table[Length[Select[IntegerPartitions[n], Total[Select[#,OddQ]]==k&]],{n,0,15},{k,Mod[n,2],n,2}] %Y A365067 Row sums are A000041. %Y A365067 The version including all k is A113685, even version A113686. %Y A365067 Column k = 1 is A119620. %Y A365067 The even version and the reverse version are both A174713. %Y A365067 For odd-indexed instead of odd parts we have A346697, even version A346698. %Y A365067 The corresponding rank statistic is A366528, even version A366531. %Y A365067 A000009 counts partitions into odd parts, ranks A066208. %Y A365067 A086543 counts partitions with odd parts, ranks A366322. %Y A365067 A239261 counts partitions with (sum of odd parts) = (sum of even parts). %Y A365067 Cf. A035363, A045931, A053253, A066967, A130780, A171966, A241638, A268335, A325698, A366533. %K A365067 nonn,tabf %O A365067 0,6 %A A365067 _Gus Wiseman_, Oct 16 2023