This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365068 #16 Dec 30 2023 21:23:13 %S A365068 0,0,0,1,2,4,7,10,16,23,34,44,67,85,119,157,210,268,360,453,592,748, %T A365068 956,1195,1520,1883,2365,2920,3628,4451,5494,6702,8211,9976,12147, %U A365068 14666,17776,21389,25774,30887,37035,44224,52819,62836,74753,88614,105062,124160 %N A365068 Number of integer partitions of n with some part that can be written as a nonnegative linear combination of the other distinct parts. %C A365068 These may be called "non-binary nonnegative combination-full" partitions. %C A365068 Does not necessarily include all non-strict partitions (A047967). %e A365068 The partition (5,4,3,3) has no part that can be written as a nonnegative linear combination of the others, so is not counted under a(15). %e A365068 The partition (6,4,3,2) has 6 = 1*2 + 1*4, so is counted under a(15). The combinations 6 = 2*3 = 3*2 and 4 = 2*2 can also be used. %e A365068 The a(3) = 1 through a(8) = 16 partitions: %e A365068 (21) (31) (41) (42) (61) (62) %e A365068 (211) (221) (51) (331) (71) %e A365068 (311) (321) (421) (422) %e A365068 (2111) (411) (511) (431) %e A365068 (2211) (2221) (521) %e A365068 (3111) (3211) (611) %e A365068 (21111) (4111) (3221) %e A365068 (22111) (3311) %e A365068 (31111) (4211) %e A365068 (211111) (5111) %e A365068 (22211) %e A365068 (32111) %e A365068 (41111) %e A365068 (221111) %e A365068 (311111) %e A365068 (2111111) %t A365068 combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]}, Select[Tuples[s],Total[Times@@@#]==n&]]; %t A365068 Table[Length[Select[IntegerPartitions[n], Function[ptn,Or@@Table[combs[ptn[[k]], DeleteCases[ptn,ptn[[k]]]]!={}, {k,Length[ptn]}]]]],{n,0,5}] %o A365068 (Python) %o A365068 from sympy.utilities.iterables import partitions %o A365068 def A365068(n): %o A365068 if n <= 1: return 0 %o A365068 alist, c = [set(tuple(sorted(set(p))) for p in partitions(i)) for i in range(n)], 0 %o A365068 for p in partitions(n,k=n-1): %o A365068 s = set(p) %o A365068 if any(set(t).issubset(s-{q}) for q in s for t in alist[q]): %o A365068 c += 1 %o A365068 return c # _Chai Wah Wu_, Sep 20 2023 %Y A365068 The complement for sums instead of combinations is A237667, binary A236912. %Y A365068 For sums instead of combinations we have A237668, binary A237113. %Y A365068 The strict case is A364839, complement A364350. %Y A365068 Allowing equal parts in the combination gives A364913. %Y A365068 For subsets instead of partitions we have A364914, complement A326083. %Y A365068 The complement is A364915. %Y A365068 A000041 counts integer partitions, strict A000009. %Y A365068 A008284 counts partitions by length, strict A008289. %Y A365068 A116861 and A364916 count linear combinations of strict partitions. %Y A365068 A323092 counts double-free partitions, ranks A320340. %Y A365068 A364912 counts linear combinations of partitions of k. %Y A365068 Cf. A108917, A151897, A364272, A364910, A364911, A365006. %K A365068 nonn %O A365068 0,5 %A A365068 _Gus Wiseman_, Aug 27 2023 %E A365068 a(31)-a(47) from _Chai Wah Wu_, Sep 20 2023