This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365072 #14 Sep 20 2023 18:12:33 %S A365072 1,1,2,2,3,3,4,5,6,8,9,17,15,31,34,53,65,109,117,196,224,328,405,586, %T A365072 673,968,1163,1555,1889,2531,2986,3969,4744,6073,7333,9317,11053, %U A365072 14011,16710,20702,24714,30549,36127,44413,52561,63786,75583,91377,107436,129463 %N A365072 Number of integer partitions of n such that no distinct part can be written as a (strictly) positive linear combination of the other distinct parts. %C A365072 We consider (for example) that 2x + y + 3z is a positive linear combination of (x,y,z), but 2x + y is not, as the coefficient of z is 0. %e A365072 The a(1) = 1 through a(8) = 6 partitions: %e A365072 (1) (2) (3) (4) (5) (6) (7) (8) %e A365072 (11) (111) (22) (32) (33) (43) (44) %e A365072 (1111) (11111) (222) (52) (53) %e A365072 (111111) (322) (332) %e A365072 (1111111) (2222) %e A365072 (11111111) %e A365072 The a(11) = 17 partitions: %e A365072 (11) (9,2) (7,2,2) (5,3,2,1) (4,3,2,1,1) (1,1,1,1,1,1,1,1,1,1,1) %e A365072 (8,3) (6,3,2) (5,2,2,2) (3,2,2,2,2) %e A365072 (7,4) (5,4,2) (4,3,2,2) %e A365072 (6,5) (5,3,3) (3,3,3,2) %e A365072 (4,4,3) %t A365072 combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]}, Select[Tuples[s],Total[Times@@@#]==n&]]; %t A365072 Table[Length[Select[Union/@IntegerPartitions[n], Function[ptn,!Or@@Table[combp[ptn[[k]],Delete[ptn,k]]!={}, {k,Length[ptn]}]]@*Union]],{n,0,15}] %o A365072 (Python) %o A365072 from sympy.utilities.iterables import partitions %o A365072 def A365072(n): %o A365072 if n <= 1: return 1 %o A365072 alist = [set(tuple(sorted(set(p))) for p in partitions(i)) for i in range(n)] %o A365072 c = 1 %o A365072 for p in partitions(n,k=n-1): %o A365072 s = set(p) %o A365072 for q in s: %o A365072 if tuple(sorted(s-{q})) in alist[q]: %o A365072 break %o A365072 else: %o A365072 c += 1 %o A365072 return c # _Chai Wah Wu_, Sep 20 2023 %Y A365072 The nonnegative version is A364915, strict A364350. %Y A365072 The strict case is A365006. %Y A365072 For subsets instead of partitions we have A365044, complement A365043. %Y A365072 A000041 counts integer partitions, strict A000009. %Y A365072 A008284 counts partitions by length, strict A008289. %Y A365072 A116861 and A364916 count linear combinations of strict partitions. %Y A365072 A237667 counts sum-free partitions, binary A236912. %Y A365072 A364912 counts positive linear combinations of partitions. %Y A365072 A365068 counts combination-full partitions, strict A364839. %Y A365072 Cf. A085489, A108917, A151897, A325862, A364272, A364910, A364911, A364913. %K A365072 nonn %O A365072 0,3 %A A365072 _Gus Wiseman_, Aug 31 2023 %E A365072 a(31)-a(49) from _Chai Wah Wu_, Sep 20 2023