This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365073 #20 Dec 13 2024 09:42:16 %S A365073 1,1,3,6,14,26,60,112,244,480,992,1944,4048,7936,16176,32320,65088, %T A365073 129504,261248,520448,1046208,2090240,4186624,8365696,16766464, %U A365073 33503744,67064064,134113280,268347392,536546816,1073575936,2146703360,4294425600,8588476416,17178349568 %N A365073 Number of subsets of {1..n} that can be linearly combined using nonnegative coefficients to obtain n. %H A365073 Andrew Howroyd, <a href="/A365073/b365073.txt">Table of n, a(n) for n = 0..100</a> %H A365073 Steven R. Finch, <a href="/A066062/a066062.pdf">Monoids of natural numbers</a>, March 17, 2009. %e A365073 The subset {2,3,6} has 7 = 2*2 + 1*3 + 0*6 so is counted under a(7). %e A365073 The a(1) = 1 through a(4) = 14 subsets: %e A365073 {1} {1} {1} {1} %e A365073 {2} {3} {2} %e A365073 {1,2} {1,2} {4} %e A365073 {1,3} {1,2} %e A365073 {2,3} {1,3} %e A365073 {1,2,3} {1,4} %e A365073 {2,3} %e A365073 {2,4} %e A365073 {3,4} %e A365073 {1,2,3} %e A365073 {1,2,4} %e A365073 {1,3,4} %e A365073 {2,3,4} %e A365073 {1,2,3,4} %t A365073 combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]]; %t A365073 Table[Length[Select[Subsets[Range[n]],combs[n,#]!={}&]],{n,0,5}] %o A365073 (PARI) %o A365073 a(n)={ %o A365073 my(comb(k,b)=while(b>>k, b=bitor(b, b>>k); k*=2); b); %o A365073 my(recurse(k,b)= %o A365073 if(bittest(b,0), 2^(n+1-k), %o A365073 if(2*k>n, 2^(n+1-k) - 2^sum(j=k, n, !bittest(b,j)), %o A365073 self()(k+1, b) + self()(k+1, comb(k,b)) ))); %o A365073 recurse(1, 1<<n) %o A365073 } \\ _Andrew Howroyd_, Sep 04 2023 %Y A365073 The case of positive coefficients is A088314. %Y A365073 The case of subsets containing n is A131577. %Y A365073 The binary version is A365314, positive A365315. %Y A365073 The binary complement is A365320, positive A365321. %Y A365073 The positive complement is counted by A365322. %Y A365073 A version for partitions is A365379, strict A365311. %Y A365073 The complement is counted by A365380. %Y A365073 The case of subsets without n is A365542. %Y A365073 A326083 and A124506 appear to count combination-free subsets. %Y A365073 A179822 and A326080 count sum-closed subsets. %Y A365073 A364350 counts combination-free strict partitions. %Y A365073 A364914 and A365046 count combination-full subsets. %Y A365073 Cf. A007865, A088809, A093971, A151897, A237668, A308546, A326020, A364534, A364839, A365043, A365381. %K A365073 nonn %O A365073 0,3 %A A365073 _Gus Wiseman_, Sep 01 2023 %E A365073 Terms a(12) and beyond from _Andrew Howroyd_, Sep 04 2023