This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365084 #14 Aug 21 2023 08:23:02 %S A365084 1,1,-4,6,6,-49,95,24,-592,1417,-414,-6809,20142,-14831,-73353,274761, %T A365084 -311105,-715647,3607624,-5463428,-5785294,45588556,-87189477, %U A365084 -25565196,552659892,-1305250324,340413165,6379267117,-18606431142,13202513476,69064770845 %N A365084 G.f. satisfies A(x) = 1 + x*A(x) / (1 + x)^5. %H A365084 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (-4,-10,-10,-5,-1). %F A365084 G.f.: A(x) = 1/( 1 - x/(1+x)^5 ). %F A365084 a(n) = -4*a(n-1) - 10*a(n-2) - 10*a(n-3) - 5*a(n-4) - a(n-5) for n > 5. %F A365084 a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n+4*k-1,n-k). %t A365084 LinearRecurrence[{-4, -10, -10, -5, -1}, {1, 1, -4, 6, 6, -49}, 1 + 30] (* _Robert P. P. McKone_, Aug 21 2023 *) %o A365084 (PARI) a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n+4*k-1, n-k)); %Y A365084 Cf. A106510, A127896, A365083. %Y A365084 Cf. A079675. %K A365084 sign,easy %O A365084 0,3 %A A365084 _Seiichi Manyama_, Aug 21 2023