cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365101 Number of distinct residues of x^n (mod n^4), x=0..n^4-1.

This page as a plain text file.
%I A365101 #13 Aug 24 2023 02:42:22
%S A365101 1,4,21,18,101,30,295,130,487,153,1211,170,2029,444,1919,1025,4625,
%T A365101 732,6499,442,1881,1818,11639,1290,12501,3045,13123,2516,23549,1530,
%U A365101 28831,8193,23009,6939,29795,4148,49285,9750,12863,3354,67241,1500,77659,10302,49187,17460,101615
%N A365101 Number of distinct residues of x^n (mod n^4), x=0..n^4-1.
%o A365101 (PARI) a(n) = #Set(vector(n^4, x, Mod(x-1,n^4)^n)); \\ _Michel Marcus_, Aug 22 2023
%o A365101 (Python)
%o A365101 def A365101(n): return len({pow(x,n,n**4) for x in range(n**4)}) # _Chai Wah Wu_, Aug 23 2023
%Y A365101 Cf. A195637, A365099, A365100, A365102, A023105, A046631, A365103, A365104.
%K A365101 nonn
%O A365101 1,2
%A A365101 _Albert Mukovskiy_, Aug 21 2023