cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365114 G.f. satisfies A(x) = 1 + x / (1 - x*A(x))^4.

This page as a plain text file.
%I A365114 #9 Aug 22 2023 07:57:12
%S A365114 1,1,4,14,56,241,1080,4998,23704,114588,562552,2797138,14057140,
%T A365114 71288385,364360204,1874960408,9706035408,50510552881,264096980192,
%U A365114 1386676113360,7308650513232,38654087828310,205076534841112,1091144400876394,5820924498941668
%N A365114 G.f. satisfies A(x) = 1 + x / (1 - x*A(x))^4.
%F A365114 If g.f. satisfies A(x) = 1 + x/(1 - x*A(x))^s, then a(n) = Sum_{k=0..n} binomial(n-k+1,k) * binomial(n+(s-1)*k-1,n-k)/(n-k+1).
%o A365114 (PARI) a(n, s=4) = sum(k=0, n, binomial(n-k+1, k)*binomial(n+(s-1)*k-1, n-k)/(n-k+1));
%Y A365114 Cf. A000108, A365113, A365115.
%Y A365114 Cf. A321798, A365111.
%K A365114 nonn
%O A365114 0,3
%A A365114 _Seiichi Manyama_, Aug 22 2023