cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365123 G.f. satisfies A(x) = (1 + x / (1 - x*A(x))^4)^2.

This page as a plain text file.
%I A365123 #10 Aug 22 2023 13:18:45
%S A365123 1,2,9,44,244,1438,8858,56340,367160,2438934,16453015,112411836,
%T A365123 776258588,5409237100,37988571802,268606426836,1910584687932,
%U A365123 13661702623498,98148312810335,708092115326436,5127976641997944,37264674894021280,271650189521574734
%N A365123 G.f. satisfies A(x) = (1 + x / (1 - x*A(x))^4)^2.
%F A365123 If g.f. satisfies A(x) = (1 + x/(1 - x*A(x))^s)^t, then a(n) = Sum_{k=0..n} binomial(t*(n-k+1),k) * binomial(n+(s-1)*k-1,n-k)/(n-k+1).
%o A365123 (PARI) a(n, s=4, t=2) = sum(k=0, n, binomial(t*(n-k+1), k)*binomial(n+(s-1)*k-1, n-k)/(n-k+1));
%Y A365123 Cf. A006632, A365114, A365124.
%K A365123 nonn
%O A365123 0,2
%A A365123 _Seiichi Manyama_, Aug 22 2023