cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365124 G.f. satisfies A(x) = (1 + x / (1 - x*A(x))^4)^4.

This page as a plain text file.
%I A365124 #8 Aug 22 2023 13:18:33
%S A365124 1,4,22,156,1209,10020,86724,775044,7096652,66232980,627749066,
%T A365124 6025752664,58459917618,572315274540,5646713239840,56091780016288,
%U A365124 560513824012020,5630664768126388,56829055796539462,575981263878482204,5859952654335118851
%N A365124 G.f. satisfies A(x) = (1 + x / (1 - x*A(x))^4)^4.
%F A365124 If g.f. satisfies A(x) = (1 + x/(1 - x*A(x))^s)^t, then a(n) = Sum_{k=0..n} binomial(t*(n-k+1),k) * binomial(n+(s-1)*k-1,n-k)/(n-k+1).
%o A365124 (PARI) a(n, s=4, t=4) = sum(k=0, n, binomial(t*(n-k+1), k)*binomial(n+(s-1)*k-1, n-k)/(n-k+1));
%Y A365124 Cf. A006632, A365114, A365123.
%K A365124 nonn
%O A365124 0,2
%A A365124 _Seiichi Manyama_, Aug 22 2023