cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365146 G.f. satisfies A(x) = ( 1 + x*A(x)^2 / (1 - x*A(x)) )^2.

This page as a plain text file.
%I A365146 #12 Aug 24 2023 07:49:38
%S A365146 1,2,11,76,591,4938,43297,393006,3661500,34813530,336447364,
%T A365146 3295264162,32636826276,326310118860,3289090885545,33386999310460,
%U A365146 341000875306393,3501847259286514,36136109243651145,374513918968721080,3896634418483676797
%N A365146 G.f. satisfies A(x) = ( 1 + x*A(x)^2 / (1 - x*A(x)) )^2.
%F A365146 If g.f. satisfies A(x) = ( 1 + x*A(x)^2 / (1 - x*A(x))^s )^t, then a(n) = Sum_{k=0..n} binomial(t*(n+k+1),k) * binomial(n+(s-1)*k-1,n-k)/(n+k+1).
%o A365146 (PARI) a(n, s=1, t=2) = sum(k=0, n, binomial(t*(n+k+1), k)*binomial(n+(s-1)*k-1, n-k)/(n+k+1));
%Y A365146 Cf. A001003, A365147.
%K A365146 nonn
%O A365146 0,2
%A A365146 _Seiichi Manyama_, Aug 23 2023