cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365147 G.f. satisfies A(x) = ( 1 + x*A(x)^2 / (1 - x*A(x)) )^3.

This page as a plain text file.
%I A365147 #13 Aug 24 2023 07:49:42
%S A365147 1,3,24,244,2802,34629,449509,6043716,83433402,1175735326,16843576440,
%T A365147 244578817557,3591620791296,53247623771787,795901064582970,
%U A365147 11981065741802125,181478799047422047,2763977213867989929,42301686984305340008
%N A365147 G.f. satisfies A(x) = ( 1 + x*A(x)^2 / (1 - x*A(x)) )^3.
%F A365147 If g.f. satisfies A(x) = ( 1 + x*A(x)^2 / (1 - x*A(x))^s )^t, then a(n) = Sum_{k=0..n} binomial(t*(n+k+1),k) * binomial(n+(s-1)*k-1,n-k)/(n+k+1).
%o A365147 (PARI) a(n, s=1, t=3) = sum(k=0, n, binomial(t*(n+k+1), k)*binomial(n+(s-1)*k-1, n-k)/(n+k+1));
%Y A365147 Cf. A001003, A365146.
%K A365147 nonn
%O A365147 0,2
%A A365147 _Seiichi Manyama_, Aug 23 2023