cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365148 G.f. satisfies A(x) = ( 1 + x*A(x)^2 / (1 - x*A(x))^2 )^2.

This page as a plain text file.
%I A365148 #14 Aug 24 2023 07:50:19
%S A365148 1,2,13,102,898,8484,84061,861918,9068950,97366812,1062425010,
%T A365148 11747773372,131350499044,1482494173128,16867912278237,
%U A365148 193273940978574,2228186999313678,25827663921909228,300825086742672934,3519001122784601524,41325186203051759324
%N A365148 G.f. satisfies A(x) = ( 1 + x*A(x)^2 / (1 - x*A(x))^2 )^2.
%F A365148 If g.f. satisfies A(x) = ( 1 + x*A(x)^2 / (1 - x*A(x))^s )^t, then a(n) = Sum_{k=0..n} binomial(t*(n+k+1),k) * binomial(n+(s-1)*k-1,n-k)/(n+k+1).
%o A365148 (PARI) a(n, s=2, t=2) = sum(k=0, n, binomial(t*(n+k+1), k)*binomial(n+(s-1)*k-1, n-k)/(n+k+1));
%Y A365148 Cf. A011270, A365149.
%Y A365148 Cf. A365120, A365133.
%K A365148 nonn
%O A365148 0,2
%A A365148 _Seiichi Manyama_, Aug 23 2023