cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365153 G.f. satisfies A(x) = ( 1 + x*A(x)^2*(1 + x*A(x)) )^2.

This page as a plain text file.
%I A365153 #11 Aug 24 2023 07:50:01
%S A365153 1,2,11,74,563,4604,39524,351322,3205699,29854250,282615379,
%T A365153 2711494224,26307568324,257673017952,2544420045432,25303000558890,
%U A365153 253184833958403,2547251287244918,25752086767703969,261480234091024906,2665405840919762043
%N A365153 G.f. satisfies A(x) = ( 1 + x*A(x)^2*(1 + x*A(x)) )^2.
%F A365153 If g.f. satisfies A(x) = ( 1 + x*A(x)^2*(1 + x*A(x))^s )^t, then a(n) = Sum_{k=0..n} binomial(t*(n+k+1),k) * binomial(s*k,n-k)/(n+k+1).
%o A365153 (PARI) a(n, s=1, t=2) = sum(k=0, n, binomial(t*(n+k+1), k)*binomial(s*k, n-k)/(n+k+1));
%Y A365153 Cf. A001002, A365154.
%K A365153 nonn
%O A365153 0,2
%A A365153 _Seiichi Manyama_, Aug 23 2023