cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365155 G.f. satisfies A(x) = ( 1 + x*A(x)^2*(1 + x*A(x))^2 )^2.

This page as a plain text file.
%I A365155 #10 Aug 24 2023 07:48:23
%S A365155 1,2,13,98,838,7690,74047,738028,7549658,78811732,836219773,
%T A365155 8991739874,97769604542,1073156173442,11875174074608,132333387616600,
%U A365155 1483789788291516,16727705523572128,189496296040063170,2155984626357225948,24625450759174328948
%N A365155 G.f. satisfies A(x) = ( 1 + x*A(x)^2*(1 + x*A(x))^2 )^2.
%F A365155 If g.f. satisfies A(x) = ( 1 + x*A(x)^2*(1 + x*A(x))^s )^t, then a(n) = Sum_{k=0..n} binomial(t*(n+k+1),k) * binomial(s*k,n-k)/(n+k+1).
%o A365155 (PARI) a(n, s=2, t=2) = sum(k=0, n, binomial(t*(n+k+1), k)*binomial(s*k, n-k)/(n+k+1));
%Y A365155 Cf. A214372, A365156.
%K A365155 nonn
%O A365155 0,2
%A A365155 _Seiichi Manyama_, Aug 23 2023