cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365171 The number of divisors d of n such that gcd(d, n/d) is a square.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 4, 3, 2, 4, 2, 4, 4, 4, 2, 4, 2, 4, 2, 4, 2, 8, 2, 4, 4, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 6, 2, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2, 8, 2, 4, 4, 4, 4, 8, 2, 4, 4, 8, 2, 4, 2, 4, 4, 4, 4, 8, 2, 6, 3, 4, 2, 8, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Aug 25 2023

Keywords

Comments

The sum of these divisors is A365172(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Floor[(e + 3)/4] + Floor[(e + 4)/4]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> (x+3)\4 + (x+4)\4, factor(n)[, 2]));
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/((1 - X)^2 * (1 + X^2)))[n], ", ")) \\ Vaclav Kotesovec, Jan 20 2024

Formula

Multiplicative with a(p^e) = floor((e + 3)/4) + floor((e + 4)/4) = A004524(e+3).
a(n) <= A000005(n), with equality if and only if n is squarefree (A005117).
a(n) >= A034444(n), with equality if and only if n is not a biquadrateful number (A046101).
a(n) == 1 (mod 2) if and only if n is a fourth power (A000583).
From Vaclav Kotesovec, Jan 20 2024: (Start)
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/(p^(2*s) + 1)).
Let f(s) = Product_{p prime} (1 - 1/(p^(2*s) + 1)).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - 1/(p^2 + 1)) = Pi^2/15 = A182448,
f'(1) = f(1) * Sum_{p prime} 2*log(p) / (p^2 + 1) = f(1) * 0.8852429263675811068149340172820329246145172848406469350087715037483367369...
and gamma is the Euler-Mascheroni constant A001620. (End)