A365174 The sum of divisors d of n such that gcd(d, n/d) is an exponentially odd number (A268335).
1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 27, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 51, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 108, 57, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 107, 84, 144
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := 1 + p^e + If[EvenQ[e], (p^(e + 1) - p)/(p^2 - 1), (1 + p^(2*Floor[e/4] + 1))*(p^(2*Floor[(e + 1)/4] + 1) - p)/(p^2 - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; 1 + p^e + if(e%2, (1 + p^(2*(e\4) + 1))*(p^(2*((e+1)\4) + 1) - p)/(p^2 - 1), (p^(e+1)-p)/(p^2-1)));}
Formula
Multiplicative with 1 + p^e + (p^(e + 1) - p)/(p^2 - 1) if e is even, and 1 + p^e + (1 + p^(2*floor(e/4)+1))*(p^(2*floor((e+1)/4)+1) - p)/(p^2 - 1) if e is odd.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(2)*zeta(6)/(2*zeta(3))) * Product_{p prime} (1 + 1/p^3 - 1/p^6) = 0.809912096042... .
Comments