A365197 a(n) and a(n+1) have k distinct digits in common. The successive ks are the successive digits of the sequence itself.
1, 10, 12, 3, 13, 103, 130, 124, 142, 2, 104, 140, 123, 132, 4, 14, 1024, 1042, 1356, 1365, 15, 51, 5, 1023, 1032, 1456, 1465, 7, 17, 107, 170, 125, 152, 1026, 1062, 1345, 1354, 16, 20, 1025, 1052, 18, 2034, 2043, 23, 102, 10234, 102345, 102354, 167, 102367, 102376
Offset: 1
Examples
a(1) = 1 and a(2) = 10 share exactly 1 digit; a(2) = 10 and a(3) = 12 share exactly 1 digit; a(3) = 12 and a(4) = 3 share 0 digit; a(4) = 3 and a(5) = 13 share exactly 1 digit; a(5) = 13 and a(6) = 103 share exactly 2 digits, etc. We see that the successive numbers of shared digits are the successive digits of the sequence itself (the successive shared digits 1, 1, 0, 1, 2 are the successive digits of the integers that start the sequence: 1, 10, 12).
Links
- Eric Angelini, Shared digits, personal blog.
Crossrefs
Cf. A184992.
Programs
-
Mathematica
a[1]=1;a[n_]:=a[n]=(c=1;While[!DuplicateFreeQ[in=(i=IntegerDigits)@c]|| MemberQ[ar=Array[a,n-1],c]||Length@Intersection[i@a[n-1],in]!=Flatten[i/@ar][[n-1]]||IntegerLength@c
Giorgos Kalogeropoulos, Aug 25 2023 *)
Comments