This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365198 #12 Aug 26 2023 15:42:06 %S A365198 4,4,6,6,6,6,6,7,8,9,10,10,10,12,12,13,14,14 %N A365198 Smallest k such that there exists a complete k-arc on the projective plane over GF(q), where q = A246655(n) is the n-th prime power > 1. %C A365198 A k-arc is a set of k points in PG(2,q) (the projective plane over GF(q)) such that no three are collinear. A complete k-arc is a k-arc which is not contained in any (k+1)-arc. %D A365198 J. W. P. Hirschfeld, Projective geometries over finite fields, Second edition, Oxford Math. Monogr., The Clarendon Press, Oxford University Press, New York, 1998. %H A365198 D. Bartoli, G. Faina, S. Marcugini and F. Pambianco, <a href="https://doi.org/10.1007/s00022-013-0178-y">On the minimum size of complete arcs and minimal saturating sets in projective planes</a>, J. Geom. 104 (2013), no. 3, 409-419. %H A365198 S. Marcugini, A. Milani, and F. Pambianco, <a href="https://arxiv.org/abs/1005.3412">Minimal complete arcs in PG(2,q), q <= 32</a>, arXiv:1005.3412 [math.CO], 2010. %H A365198 B. Segre, <a href="https://doi.org/10.1007/BF02410658">Le geometrie di Galois</a>, Ann. Mat. Pura Appl. (4) 48 (1959), 1-96. %F A365198 a(n) > sqrt(2*A246655(n)) + 1 [Segre]. %Y A365198 Cf. A365216. %K A365198 nonn,hard,more %O A365198 1,1 %A A365198 _Robin Visser_, Aug 26 2023